【題目】觀察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此規(guī)律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

【答案】n(n+1)
【解析】解:觀察下列等式:(sin 2+(sin 2= ×1×2;(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此規(guī)律(sin 2+(sin 2+(sin 2+…+(sin 2= ×n(n+1),
故答案為: n(n+1)
由題意可以直接得到答案.;本題考查了歸納推理的問(wèn)題,關(guān)鍵是找到相對(duì)應(yīng)的規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線 )的焦點(diǎn)為,準(zhǔn)線為, ,在第一象限,已知以為圓心, 為半徑的圓, 兩點(diǎn)的上方),為坐標(biāo)原點(diǎn).

1)若是邊長(zhǎng)為的等邊三角形,且直線 )與拋物線相交于, 兩點(diǎn),證明: 為定值;

2)記直線與拋物線的另一個(gè)交點(diǎn)為,的面積比為3,證明直線過(guò)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asin A=(2bc)sin B+(2cb)sin C.

(1)A的大; (2)sin B+sin C=1,試判斷ABC的形狀.(12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù)=(sin x+cos x)2+cos 2x.

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)頂點(diǎn)坐標(biāo)分別為:直線經(jīng)過(guò)點(diǎn)

(1)外接圓的方程

(2)若直線相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.

(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,短軸兩個(gè)端點(diǎn)為, ,且四邊形是邊長(zhǎng)為的正方形。

(1)求橢圓的方程;

(2)已知圓的方程是,過(guò)圓上任一點(diǎn)作橢圓的兩條切線, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個(gè)數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案