【題目】ABC中,ab,c分別為內(nèi)角ABC的對邊,且2asin A=(2bc)sin B+(2cb)sin C.

(1)A的大; (2)sin B+sin C=1,試判斷ABC的形狀.(12)

【答案】(1)A=120°.(2)BC=30°.

【解析】

(1)利用正弦定理,余弦定理即可求 的大;

方法一 由(1)sin2A=sin2B+sin2C+sin Bsin C,

A=120°,∴sin2B+sin2C+sin Bsin C

∵sin B+sin C=1,∴sin C=1-sin B.,代入求出,即可判斷;

方法二 由(1)A=120°,∴BC=60°,

C=60°-B,∴sin B+sin C=sin(B+60°)=1,求出,即可判斷;

 (1)由已知,根據(jù)正弦定理得2a2=(2bc)b+(2cb)c,

a2b2c2bc.

由余弦定理得a2b2c2-2bccos A,

cos A=-A=120°.

(2)方法一 由(1)sin2A=sin2B+sin2C+sin Bsin C,

A=120°,∴sin2B+sin2C+sin Bsin C

∵sin B+sin C=1,∴sin C=1-sin B.

∴sin2B+(1-sin B)2+sin B(1-sin B)=,

sin2B-sin B=0.

解得sin B.sin C.

BC=30°.

所以,ABC是等腰的鈍角三角形.

方法二 由(1)A=120°,∴BC=60°,

C=60°-B,

∴sin B+sin C=sin B+sin(60°-B)=sin Bcos Bsin B

sin Bcos B=sin(B+60°)=1,

B=30°,C=30°.

∴△ABC是等腰的鈍角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)y=2sin 2x的圖像向左平移 個(gè)單位長度,則評議后圖象的對稱軸為( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從含有兩件正品a,b和一件次品c3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中,恰有一件是次品的概率。

(1)每次取出不放回;(2)每次取出放回;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P﹣A1B1C1D1 , 下部的形狀是正四棱柱ABCD﹣A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6m,PO1=2m,則倉庫的容積是多少?
(2)若正四棱柱的側(cè)棱長為6m,則當(dāng)PO1為多少時(shí),倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設(shè)a=2,b= .
①求方程f(x)=2的根;
②若對于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求實(shí)數(shù)m的最大值;
(2)若0<a<1,b>1,函數(shù)g(x)=f(x)﹣2有且只有1個(gè)零點(diǎn),求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上25、13后成為等比數(shù)列{bn}中的b3、b4b5

)求數(shù)列{bn}的通項(xiàng)公式;

)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖所示,在多面體 中,四邊形 均為正方形,點(diǎn) 的中點(diǎn),過的平面交 于 點(diǎn)

(1) 證明:

(2) 求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:
(sin 2+(sin 2= ×1×2;
(sin 2+(sin 2+(sin 2+sin( 2= ×2×3;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×3×4;
(sin 2+(sin 2+(sin 2+…+sin( 2= ×4×5;

照此規(guī)律,
(sin 2+(sin 2+(sin 2+…+(sin 2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案