已知橢圓+y2=1(a>1)的兩個(gè)焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且∠F1PF2=60°,則|PF1|•|PF2|的值為( )
A.1
B.
C.
D.
【答案】分析:先設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,代入△F1PF2的余弦定理中求得mn的值.
解答:解:設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=2a,
∴m2+n2+2nm=4a2,
∴m2+n2=4a2-2nm
由余弦定理可知cos60°===,求得mn=
故選C.
點(diǎn)評(píng):本題主要考查了橢圓的應(yīng)用,橢圓的簡(jiǎn)單性質(zhì)和橢圓的定義.考查了考生對(duì)所學(xué)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓+y2=1(a≥2),直線(xiàn)l與橢圓交于A,B兩點(diǎn),M是線(xiàn)段AB的中點(diǎn),連結(jié)OM并延長(zhǎng)交橢圓于點(diǎn)C.

(1)設(shè)直線(xiàn)AB與直線(xiàn)OM的斜率分別為k1、k2,且k1·k2=,求橢圓的離心率;

(2)若直線(xiàn)AB經(jīng)過(guò)橢圓的右焦點(diǎn)F,且四邊形OACB是平行四邊形,求直線(xiàn)AB斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省莆田市仙游一中、六中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓+y2=1的左、右焦點(diǎn)為F1、F2,上頂點(diǎn)為A,直線(xiàn)AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點(diǎn)O為坐標(biāo)原點(diǎn).
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線(xiàn)段BF2上是否存在點(diǎn)M,使得AM⊥OB,若存在,請(qǐng)?jiān)趫D1中指出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江西省名校高考數(shù)學(xué)信息卷1(理科)(解析版) 題型:選擇題

已知橢圓+y2=1上一點(diǎn)M到點(diǎn)(1,0)的距離是,則點(diǎn)M到直線(xiàn)x=-2的距離是( )
A.
B.2
C.3
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年?yáng)|北三省長(zhǎng)春、哈爾濱、沈陽(yáng)、大連第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知橢圓+y2=1(a>1)的兩個(gè)焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且∠F1PF2=60°,則|PF1|•|PF2|的值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年吉林省長(zhǎng)春市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:選擇題

已知橢圓+y2=1(a>1)的兩個(gè)焦點(diǎn)為F1、F2,P為橢圓上一點(diǎn),且∠F1PF2=60°,則|PF1|•|PF2|的值為( )
A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案