已知曲線.
(1)若曲線是焦點(diǎn)在軸上的橢圓,求的取值范圍;
(2)設(shè),過點(diǎn)的直線與曲線交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若為直角三角形,求直線的斜率.

(1);(2)的值為.

解析試題分析:(1)曲線是焦點(diǎn)在軸上的橢圓,則求解不等式組即可得到參數(shù)的取值范圍;(2)設(shè)的方程為(注意檢驗(yàn)斜率不存在的情況是否符合要求),再設(shè)出兩點(diǎn)的坐標(biāo),在為直角三角形時(shí),應(yīng)該分類討論,因?yàn)闆]有明確哪個(gè)角為直角,當(dāng)時(shí),有,聯(lián)立該直線與橢圓的方程,得到根與系數(shù)的關(guān)系,代入即可求出的取值;當(dāng)時(shí),這兩種情況是類似的,不妨取,由聯(lián)立可求解出點(diǎn)的坐標(biāo),然后再代入直線方程,即可求出的值.
試題解析:(1)若曲線是焦點(diǎn)在軸上的橢圓,則有
解得       2分
(2)時(shí),曲線的方程為,為橢圓,
由題意知,點(diǎn)的直線的斜率存在,所以設(shè)的方程為
消去       4分

當(dāng)時(shí),解得
設(shè)兩點(diǎn)的坐標(biāo)分別為
(。┊(dāng)為直角時(shí)

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/1/zpygk.png" style="vertical-align:middle;" />為直角,所以,即
所以
所以,解得       6分
(ⅱ)當(dāng)為直角時(shí),不妨設(shè)為直角
此時(shí),,所以,即

將①代入②,消去,解得(舍去)
代入①,得
所以       8分
經(jīng)檢驗(yàn),所求值均符合題意,綜上,的值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)又本與橢圓交于、兩不同點(diǎn),且△的面積=,其中為坐標(biāo)原點(diǎn).
(1)證明均為定值;
(2)設(shè)線段的中點(diǎn)為,求的最大值;
(3)橢圓上是否存在點(diǎn),使得?若存在,判斷△的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸的拋物線經(jīng)過點(diǎn)
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)直線過定點(diǎn),斜率為,當(dāng)為何值時(shí),直線與拋物線有公共點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓上的點(diǎn)到左右兩焦點(diǎn)的距離之和為,離心率為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線交橢圓于兩點(diǎn),若軸上一點(diǎn)滿足,求直線的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點(diǎn),橢圓與拋物線有一個(gè)公共的焦點(diǎn),且過點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)是橢圓在第一象限上的任一點(diǎn),連接,過點(diǎn)作斜率為的直線,使得與橢圓有且只有一個(gè)公共點(diǎn),設(shè)直線的斜率分別為,,試證明為定值,并求出這個(gè)定值;
(III)在第(Ⅱ)問的條件下,作,設(shè)于點(diǎn),
證明:當(dāng)點(diǎn)在橢圓上移動(dòng)時(shí),點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩點(diǎn),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為.
(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.
求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo),,圓的內(nèi)切圓,在邊,上的切點(diǎn)分別為,(從圓外一點(diǎn)到圓的兩條切線段長相等),動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案