圓心在x軸正半軸上,半徑為5且通過點(0,4)的圓的方程是   

[  ]

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C的半徑為2,圓心在x軸正半軸上,直線3x-4y+4=0與圓C相切
(1)求圓C的方程
(2)過點Q(0,-3)的直線l與圓C交于不同的兩點A(x1,y1),B(x2,y2)且為x1x2+y1y2=3時求:△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線的頂點在坐標原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x-
3
y+4=0
,一個圓的圓心E在x軸正半軸
上,且該圓與直線l和直線x=-2軸均相切.
(Ⅰ)求圓E的方程;
(Ⅱ)設(shè)P(1,1),過P作圓E的兩條互相垂直的弦AB、CD,求AC中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•濰坊三模)已知圓心在x軸正半軸上的圓C過雙曲線x2-y2=l的右頂點,且被雙曲線的一條漸近線截得的弦長為2
7
,則圓C的方程為(  )

查看答案和解析>>

同步練習冊答案