若f(1-cosx)=sin2x,則f(x)的解析式是


  1. A.
    y=x2+2x(0≤x≤2)
  2. B.
    y=-x2+2x
  3. C.
    y=-x2+2x(0≤x≤2)
  4. D.
    y=x2-2x
C
分析:令1-cosx=t求出cosx,利用三角函數(shù)的平方關(guān)系將正弦用余弦表示;將t,cosx代入求出解析式.
解答:令1-cosx=t0≤t≤2則cosx=1-t
所以有f(t)=1-cos2x=1-(1-t)2=2t-t2
所以f(x)=2x-x2
故選C
點(diǎn)評(píng):本題考查利用換元法求函數(shù)的解析式.一般的,知f(ax+b)的解析式求f(x)的解析式常用此法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、若f(1-cosx)=sin2x,則f(x)的解析式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列4個(gè)命題:
①函數(shù)y=sinx在第一象限是增函數(shù);
②函數(shù)y=|cosx+
12
|
的最小正周期是π
③函數(shù)y=f(x),若f(1+2x)=f(1-2x),則f(x)的圖象自身關(guān)于直線x=1對(duì)稱;
④對(duì)于任意實(shí)數(shù)x有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí)f′(x)>g′(x)
其中正確命題的序號(hào)是
③④
③④
.(填上所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(x+
π
2
)cosx-sinxcos(π-x)

(1)試判斷直線x=
π
8
是否是函數(shù)f(x)圖象的對(duì)稱軸,并說(shuō)明理由;
(2)在△ABC中,若f(A)=1,A∈(0,
π
2
),BC=2,B=
π
3
,求邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若f(1-cosx)=sin2x,則f(x)的解析式是( )
A.y=x2+2x(0≤x≤2)
B.y=-x2+2
C.y=-x2+2x(0≤x≤2)
D.y=x2-2

查看答案和解析>>

同步練習(xí)冊(cè)答案