已知函數(shù)滿足,則大小關系是(    )

A.     B.     C.     D.不能確定

 

【答案】

B

【解析】

試題分析:求導數(shù)得所以是增函數(shù)

考點:導數(shù)判定單調性

點評:首先對原函數(shù)求導,通過判斷導數(shù)正負得到其單調性,進而利用單調性比較大小

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=a|x|+
2
ax
(a>0,a≠1)
,
(Ⅰ)若a>1,且關于x的方程f(x)=m有兩個不同的正數(shù)解,求實數(shù)m的取值范圍;
(Ⅱ)設函數(shù)g(x)=f(-x),x∈[-2,+∞),g(x)滿足如下性質:若存在最大(小)值,則最大(小)值與a無關.試求a的取值范圍.
(2)已知函數(shù)f(x)=lnx-mx+m,m∈R.
(I)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,任意的0<a<b,求證:
f(b)-f(a)
a-b
1
a(1+a)
.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2,
(Ⅰ)求函數(shù)f(x)的最大值和最小值;
(Ⅱ)試比較f(
1
2n
)
1
2n
+2
的大。
(Ⅲ)某同學發(fā)現(xiàn):當x=
1
2n
(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足①f(1)=3;②f(x)≥2恒成立,③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2.
(1)試求函數(shù)f(x)的最大值和最小值;
(2)試比較f(
1
2n
)與
1
2n
+2(n∈N)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先在答題卡上把所選題目對應的題號填入括號中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對應的一個特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2+t
y=t+1
(t
為參數(shù)),曲線P在以該直角坐標系的原點O的為極點,x軸的正半軸為極軸的極坐標系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標方程;
(Ⅱ)設曲線C和曲線P的交點為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實數(shù)t的取值范圍;
(Ⅱ)記t的最大值為T,若正實數(shù)a、b、c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中:
①若函數(shù)f(x)=ax2+(2a+b)x+2(x∈[2a-1,a+4])是偶函數(shù),則實數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③已知函數(shù)f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
④設lg2=a,lg3=b那么可以得到log56=
a+b1-a

⑤函數(shù)f(x)=log2(3+2x-x2)的值域是(0,2),其中正確說法的序號是
①③④
①③④
(注:把你認為是正確的序號都填上).

查看答案和解析>>

同步練習冊答案