(本小題滿分12分)已知函數(shù)

(1)若,求的取值范圍

(2)證明:

 

(1) (2)見解析

【解析】

試題分析:(1)利用導(dǎo)數(shù)方法證明不等式在區(qū)間上恒成立的基本方法是構(gòu)造函數(shù),然后根據(jù)函數(shù)的單調(diào)性,或者函數(shù)的最值證明函數(shù),其中一個重要的技巧就是找到函數(shù)在什么地方可以等于零,這往往就是解決問題的一個突破口,觀察式子的特點,找到特點證明不等式;(2)含參數(shù)的一元二次不等式在某區(qū)間內(nèi)恒成立的問題通常有兩種處理方法:一是利用二次函數(shù)在區(qū)間上的最值來處理;二是分離參數(shù),再去求函數(shù)的最值來處理,一般后者比較簡單.

試題解析:(1)∵

,則 從而

(2)由(1)知

當(dāng)時,

當(dāng)時,

.

考點:1、利用導(dǎo)數(shù)求函數(shù)的最值;2、證明不等式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線y=
1
4
x2的焦點,A,B,C為該拋物線上三點,若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=( 。
A、3B、4C、6D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x-2)(1-x),x≤0
lnx,x>0
,若|f(x)|≥a(x-1),則a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-1]
C、[-1,1]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正三棱柱(底面是正三角形,高等于側(cè)棱長)的三視圖如圖所示,這個正三棱柱的表面積是(  )
A、8
B、24
C、4
3
+24
D、8
3
+24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體三視圖如圖所示,則該幾何體的體積為(  )
A、8-
π
4
B、8-
π
2
C、8-π
D、8-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)在中,分別為內(nèi)角的對邊,的面積是30,

(1)求;

(2)若,求的值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知等比數(shù)列{}中, 等差數(shù)列中,,則數(shù)列的前9項和等于

A.9 B.18 C.36 D.72

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在正三角形中,上的點,,則 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆天津市高三上學(xué)期零月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的圖像恒過定點A,若點A在直線mx+ny-1=0(mn>0)上,則

的最小值為 .

 

查看答案和解析>>

同步練習(xí)冊答案