設(shè)F為拋物線y=
1
4
x2的焦點(diǎn),A,B,C為該拋物線上三點(diǎn),若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=( 。
A、3B、4C、6D、9
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意可得F(1,0),是三角形ABC的重心,故1=
y1+y2+y3
3
,再由拋物線的定義可得|
FA
|+|
FB
|+|
FC
|=(y1+1)+(y2+1)+(y3+1)=6.
解答:解:由題意可得p=1,焦點(diǎn)F(0,1),準(zhǔn)線為 y=-1,
FA
+
FB
+
FC
=
0
,
∴F是三角形ABC的重心,
設(shè)A、B、C 的縱坐標(biāo)分別為 y1,y2,y3,
∴1=
y1+y2+y3
3
,∴y1+y2+y3=3.
由拋物線的定義可得|
FA
|+|
FB
|+|
FC
|=(y1+1)+(y2+1)+(y3+1)=6.
故選:C.
點(diǎn)評(píng):本題考查三角形的重心坐標(biāo)公式,拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,求得y1+y2+y3=3,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-2,1]時(shí),不等式ax3-x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、[-5,-3]
B、[-6,-
9
8
]
C、[-6,-2]
D、[-4,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線x2=2py(p>0)上縱坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離為3,則焦點(diǎn)到準(zhǔn)線的距離為( 。
A、2
B、8
C、
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)正數(shù)a,b的等差中項(xiàng)是
9
2
,等比中項(xiàng)是2
5
,且a>b,則拋物線ay2+bx=0的焦點(diǎn)坐標(biāo)為(  )
A、(-
5
16
,0)
B、(-
1
5
,0)
C、(
1
5
,0)
D、(-
2
5
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,Rt△ABC的三個(gè)頂點(diǎn)都在給定的拋物線x2=2py(p>0)上,且斜邊AB∥x軸,則斜邊上的高|CD|=( 。
A、p
B、2p
C、
p
2
D、
p
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和的最小值是( 。
A、
5
2
B、
3
2
C、3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=x按向量
a
平移后得到的直線與曲線y=ln(x+2)相切,則
a
為( 。
A、(0,1)
B、(1,0)
C、(0,2)
D、(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax2+bx(a>0,b>0)在點(diǎn)(1,f(1)處的切線斜率為1,則
8a+b
ab
的最小值是( 。
A、10
B、9
2
C、18
D、10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆寧夏高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù)

(1)若,求的取值范圍

(2)證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案