【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點,曲線在點處的切線斜率為
(1)求的值及函數(shù)的極值;
(2)證明:當(dāng)時,
【答案】(1)當(dāng)x=ln2時,f(x)取得極小值,且極小值為f(ln2)=2-ln4,f(x)無極大值.(2)見解析
【解析】試題分析:(1)首先求點的坐標(biāo),再根據(jù),解得的值,然后求的值,以及兩側(cè)的單調(diào)性,根據(jù)單調(diào)性求得函數(shù)的極值;(2)設(shè)函數(shù) ,根據(jù)(1)的結(jié)果可知函數(shù)單調(diào)遞增,即證.
試題解析: (1)由f(x)=ex-ax,得f′(x)=ex-a. 又f′(0)=1-a=-1,得a=2.
所以f(x)=ex-2x,f′(x)=ex-2. 令f′(x)=0,得x=ln2.
當(dāng)x<ln2時,f′(x)<0,f(x)單調(diào)遞減;當(dāng)x>ln2時,f′(x)>0,f(x)單調(diào)遞增.
所以當(dāng)x=ln2時,f(x)取得極小值,且極小值為f(ln2)=eln2-2ln2=2-ln4,f(x)無極大值.
(2)令g(x)=ex-x2,則g′(x)=ex-2x. 由(1)得g′(x)=f(x)≥f(ln2)>0,
故g(x)在R上單調(diào)遞增,又g(0)=1>0,因此,當(dāng)x>0時,g(x)>g(0)>0,即x2<ex.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) 同時滿足以下兩個條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(﹣1,1),f(x)g(x)<0.
則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長;
(2)求過點(﹣3,1)且與⊙O相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4﹣1:平面幾何
如圖AB是⊙O的直徑,弦BD,CA的延長線相交于點E,EF垂直BA的延長線于點F.
(1)求證:∠DEA=∠DFA;
(2)若∠EBA=30°,EF= ,EA=2AC,求AF的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數(shù)按分組,其頻率分布直方圖如圖所示,學(xué)校要求每名教師都要參加兩項培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試.已知各年齡段兩項培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如表示,假設(shè)兩項培訓(xùn)是相互獨立的,結(jié)業(yè)考試成績也互不影響.
年齡分組 | A項培訓(xùn)成績優(yōu)秀人數(shù) | B項培訓(xùn)成績優(yōu)秀人數(shù) |
[20,30) | 30 | 18 |
[30,40) | 36 | 24 |
[40,50) | 12 | 9 |
[50,60] | 4 | 3 |
(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求從年齡段[20,30)抽取的人數(shù);
(2)求全校教師的平均年齡;
(3)隨機(jī)從年齡段[20,30)和[30,40)內(nèi)各抽取1人,設(shè)這兩人中兩項培訓(xùn)結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P(x0,y0)是函數(shù)f(x)圖象上任意一點,且y02≥x02,則f(x)的解析式可以是_____.(填序號)
①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一個重要常數(shù))③f(x)=x+④y=x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|2x﹣a|﹣1.
①當(dāng)a=0時,不等式f(x)+1>0的解集為_____;
②若函數(shù)f(x)有三個不同的零點,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“AB”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對角互補(bǔ)”的逆否命題.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com