【題目】設(shè)P(x0,y0)是函數(shù)f(x)圖象上任意一點(diǎn),且y02≥x02,則f(x)的解析式可以是_____.(填序號)

①f(x)=x﹣②f(x)=ex﹣1(e≈2.718,是一個重要常數(shù))③f(x)=x+④y=x2

【答案】

【解析】

可取x0=1,可判斷①;取x0=1,可判斷②;運(yùn)用作差法,結(jié)合平方差公式可判斷③;由作差法即可判斷④.

①f(x)=x﹣,當(dāng)x0=1,即有y0=1﹣1=0,

顯然y02≥x02不成立,故①不可以;

②f(x)=ex﹣1,當(dāng)x0=﹣1,即有y0=﹣1,

顯然y02≥x02不成立,故②不可以;

③f(x)=x+,由y02﹣x02=(x0+2﹣x02=8+>8,

故③可以;

④y=x2,由y02﹣x02=x02(x02﹣1),取x0=,y02≥x02不成立,故④不可以.

故答案為:③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若是兩個相交平面,則在下列命題中,真命題的序號為 .(寫出所有真命題的序號)

若直線,則在平面內(nèi),一定不存在與直線平行的直線.

若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

若直線,則在平面內(nèi),一定存在與直線垂直的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是關(guān)于的偶函數(shù).

(1)求的值;

(2)求證: 對任意實(shí)數(shù),函數(shù)的圖象與函數(shù)的圖象最多只有一個交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求 ;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=ex+aex為偶函數(shù),則f(x﹣1)< 的解集為(
A.(2,+∞)
B.(0,2)
C.(﹣∞,2)
D.(﹣∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的對角線相交于點(diǎn),將沿對角線折起,使得平面平面(如圖),則下列命題中正確的是( )

A. 直線直線,且直線直線

B. 直線平面,且直線平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨(dú)立的,且命中的概率都是
(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為ξ.求ξ的分布列及數(shù)學(xué)期望E(ξ).( 結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑分別為 R 、r 的兩個圓外切于點(diǎn) P , 點(diǎn) P 到這兩圓的一條外公切線的距離等于d .求證.

查看答案和解析>>

同步練習(xí)冊答案