已知函數(shù).
(1)求函數(shù)的最小值和最小正周期;
(2)設(shè)△的內(nèi)角的對(duì)邊分別為且,,若,求的值。
(1)的最小值是, 最小正周期是
(2),.
解析試題分析:(1), 3分
則的最小值是, 最小正周期是; 6分
(2),則, 7分
,,所以,
所以,, 9分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/0/rrdkx1.png" style="vertical-align:middle;" />,所以由正弦定理得, ① 10分
由余弦定理得,即 ② 11分
由①②解得:,. 12分
考點(diǎn):正弦定理的運(yùn)用
點(diǎn)評(píng):主要是考查了解三角形中正弦定理的運(yùn)用,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,其中
(1)求函數(shù)的最小正周期,并從下列的變換中選擇一組合適變換的序號(hào),經(jīng)過(guò)這組變換的排序,可以把函數(shù)的圖像變成的圖像;(要求變換的先后順序)
①縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的倍,
②縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,
③橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,
④橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉?lái)的倍,
⑤向上平移一個(gè)單位,
⑥向下平移一個(gè)單位,
⑦向左平移個(gè)單位,
⑧向右平移個(gè)單位,
⑨向左平移個(gè)單位,
⑩向右平移個(gè)單位,
(2)在中角對(duì)應(yīng)邊分別為,,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A為銳角.
(1)求角A的大;
(2)求函數(shù)f(x)=cos2x+4cosAsinx(x∈R)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,,且的最小正周期為
(Ⅰ)求的值;
(Ⅱ)若,解方程;
(Ⅲ)在中,,,且為銳角,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的最小值和最小正周期;
(2)已知內(nèi)角的對(duì)邊分別為,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中常數(shù);
(1)若在上單調(diào)遞增,求的取值范圍;
(2)令,將函數(shù)的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖像,區(qū)間(且)滿(mǎn)足:在上至少含有30個(gè)零點(diǎn),在所有滿(mǎn)足上述條件的中,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com