6.已知alog94=1,3b=2,則ab=1.

分析 把已知等式變形求a,化指數(shù)式為對數(shù)式求b,再利用換底公式化簡求值.

解答 解:∵alog94=1,3b=2,
∴$a=\frac{1}{lo{g}_{9}4}=lo{g}_{4}9=lo{g}_{2}3$,b=log32,
則$ab=lo{g}_{2}3•lo{g}_{3}2=\frac{lg3}{lg2}•\frac{lg2}{lg3}=1$.
故答案為:1.

點(diǎn)評 本題考查對數(shù)的運(yùn)算性質(zhì),考查了指數(shù)式和對數(shù)式的互化,是基礎(chǔ)的計(jì)算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義數(shù)列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),則使xn是整數(shù)的n的最小值是( 。
A.2B.3C.4D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在幾何體ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,點(diǎn)D在底面ABC上的射影O為底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)證明:A,D,E,O四點(diǎn)共面;
(2)求幾何體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若z=$\frac{3+2i}{i}$,則|$\overline{z}-1$|等于$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,其漸近線方程為y=±$\frac{2}{3}$x,若點(diǎn)P是其右支上(不同于右頂點(diǎn))一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),則△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x)=(a-3)x${\;}^{{a}^{2}-3a-2}$既是冪函數(shù)又是二次函數(shù),則a的值是( 。
A.-1B.4C.-1或4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),以AE為邊作正方形AEFG.
(1)連結(jié)GD,求證△ADG≌△ABE;
(2)連結(jié)FC,求證∠FCN=45°;
(3)請問在AB邊上是否存在一點(diǎn)Q,使得四邊形DQEF是平行四邊形?若存在,請證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx-x2,g(x)=$\sqrt{x}$-x-2.
(Ⅰ)若不等式f(x)≤ag(x)對x∈[$\frac{1}{4}$,1]恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)+$\frac{1}{2}$x的最大值,并證明當(dāng)n∈N時(shí)f(n)+g(n)≤-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知ω,t>0,函數(shù)$f(x)=|{\begin{array}{l}{\sqrt{3}}&{sinωx}\\ 1&{cosωx}\end{array}}|$的最小正周期為2π,將f(x)的圖象向左平移t個(gè)單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則t的最小值為$\frac{5π}{6}$.

查看答案和解析>>

同步練習(xí)冊答案