某小區(qū)想利用一矩形空地建市民健身廣場,設(shè)計時決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個等腰直角三角形,其中,,且中,,經(jīng)測量得到.為保證安全同時考慮美觀,健身廣場周圍準備加設(shè)一個保護欄.設(shè)計時經(jīng)過點作一直線交于,從而得到五邊形的市民健身廣場,設(shè).
(1)將五邊形的面積表示為的函數(shù);
(2)當為何值時,市民健身廣場的面積最大?并求出最大面積.
(1)();(2)時,最大面積為.
解析試題分析:(1)要求五邊形的面積,可先求的面積,為此要求出(因為),作,垂足為,則,又,因此利用相似形的性質(zhì)可得,這樣可得,于是;(2)對要求最大值,可把作為一個整體進行變形,即,可以應用基本不等式求得最值,要注意等號成立的條件.
(1)作GH⊥EF,垂足為H,
因為,所以,因為
所以,所以 2分
過作交于T,
則,
所以
7分
由于與重合時,適合條件,故, 8分
(2), 10分
所以當且僅當,即時,取得最大值2000, 13分
所以當時,得到的市民健身廣場面積最大,最大面積為. 14分
考點:(1)相似形與多邊形的面積;(2)函數(shù)的最值問題.
科目:高中數(shù)學 來源: 題型:解答題
(滿分16分)已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明:是上的偶函數(shù);
(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍;
(3)已知正數(shù)滿足:存在,使得成立,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)f(x)=,g(x)=f(x)-ax,x∈[1,3],其中a∈R,記函數(shù)g(x)的最大值與最小值的差為h(a).
(1)求函數(shù)h(a)的解析式;
(2)畫出函數(shù)y=h(x)的圖象并指出h(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內(nèi)單調(diào)遞增;
(2)若a>0且f(x)在(1,+∞)內(nèi)單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(13分)(2011•湖北)設(shè)函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數(shù),已知曲線y=f(x)與y=g(x)在點(2,0)處有相同的切線l.
(Ⅰ) 求a、b的值,并寫出切線l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個互不相同的實根0、x1、x2,其中x1<x2,且對任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com