正三棱柱ABC-A1B1C1中,異面直線AC與B1C1所成的角是


  1. A.
    30°
  2. B.
    60°
  3. C.
    90°
  4. D.
    120°
B
分析:根據(jù)正三棱柱的幾何特征,我們易得到∠ACB即為異面直線AC與B1C1所成的角,再結(jié)合底面△ABC為正三角形,即可得到答案.
解答:∵在三棱柱ABC-A1B1C1中B1C1∥BC
∴∠ACB即為異面直線AC與B1C1所成的角
又∵三棱柱ABC-A1B1C1為正三棱柱
∴底面△ABC為正三角形
∴異面直線AC與B1C1所成的角為60°
故選B
點評:本題考查的知識點是異面直線及其所在的角,解答的關鍵是根據(jù)正三棱柱的幾何特征,求出異面直線AC與B1C1所成的角對應的平面角.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在 正三棱柱ABC-A1 B1 C1中,底面邊長為
2

(1)設側(cè)棱長為1,求證A B1⊥B C1;
(2)設A B1與B C1成600角,求側(cè)棱長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正三棱柱ABC-A1 B1 C1中,AA1=4,AB=2,M是AC的中點,點N在AA1上,AN=
1
4

(1)求BC1與側(cè)面AC C1 A1所成角的正弦值;
(2)證明:MN⊥B C1
(3)求二面角C-C1B-M的平面角的正弦值,若在△A1B1C1中,
C1E
=
1
3
EA1
C1F
=
1
4
FB1
,
C1H
=x
C1A1
+y
C1B1
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB=數(shù)學公式=a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:1996年全國統(tǒng)一高考數(shù)學試卷(文科)(解析版) 題型:解答題

如圖:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
(Ⅰ)求證:面AEF⊥面ACF;
(Ⅱ)求三棱錐A1-AEF的體積.

查看答案和解析>>

同步練習冊答案