分析 設(shè)x<0,則-x>0,由奇函數(shù)性質(zhì)及已知表達(dá)式可求得x<0時(shí)f(x),再由奇函數(shù)性質(zhì)可求f(0)=0,從而求得函數(shù)在x≤0時(shí)的解析式.
解答 解:設(shè)x<0 則-x>0,
∵當(dāng)x>0時(shí),f(x)=10x,
∴f(-x)=10-x,
∵f(x)是R上的奇函數(shù),
∴f(-x)=-f(x),
∴f(-x)=10-x=-f(x),
∴f(x)=-10-x,(x<0)
∵f(x)是R上的奇函數(shù),
∴f(0)=0,
∴當(dāng)x≤0時(shí),f(x)的解析式為f(x)=$\left\{\begin{array}{l}{0,x=0}\\{-1{0}^{-x},x<0}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{0,x=0}\\{-1{0}^{-x},x<0}\end{array}\right.$.
點(diǎn)評(píng) 本題考查了求函數(shù)的解析式,求函數(shù)解析式常見(jiàn)的方法有:待定系數(shù)法,換元法,湊配法,消元法等.同時(shí)考查了函數(shù)的奇偶性,奇函數(shù)要注意定義域在R上時(shí),對(duì)f(0)=0的應(yīng)用,解題的關(guān)鍵是在整體代換的過(guò)程中運(yùn)用了函數(shù)的奇偶性.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有最小值無(wú)最大值 | B. | 有最大值無(wú)最小值 | ||
C. | 既有最大值又有最小值 | D. | 既無(wú)最大值又無(wú)最小值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $2\sqrt{3}$ | C. | $2\sqrt{6}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10,15) | 20 | 0.25 |
[15,20) | 50 | n |
[20,25) | m | p |
[25,30) | 4 | 0.05 |
合計(jì) | M | N |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com