分析 (1)對f(x)求導,進而可得切線的斜率,由此能求出曲線y=f(x)在(1,f(1))處的切線方程.
(2)令g(x)=f′(x),對g(x)求導,進而可判斷f′(x)的單調性,再分別對a≤2,a>2兩種情況討論f(x)的單調性和最值,即可得到a的取值范圍.
解答 解:(1)當a=4時,f(x)=(x+1)lnx-4x+4,
∴x>0,f(x)=lnx+$\frac{1}{x}$-3,
∴f′(1)=$\frac{1}{1}+ln1-3=-2$,又f(1)=0,
∴曲線y=f(x)在(1,f(1))處的切線方程為:
y-0=-2(x-1),即2x+y-2=0.
(2)令g(x)=${f}^{'}(x)=lnx+\frac{1}{x}+1-a$,
則${g}^{'}(x)=\frac{1}{x}-\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
當x∈(1,+∞)時,g′(x)>0恒成立,
即f′(x)在(1,+∞)上單調遞增,f′(1)=2-a,
①當a≤2時,f′(1)≥0,故f(a)在(1,+∞)上單調遞增,且f(1)=0,此時a≤2符合題意;
②當a>2時,由f(1)=0及f′(x)在(1,+∞)上單調遞增,知?x0>1,
使得f′(x0)=0,即f(x0)<0,不符合題意,
綜上,a的取值范圍是(-∞,2].
點評 本題考查切線方程的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導數(shù)的幾何意義和導數(shù)性質的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -0.5 | B. | 0.5 | C. | -5.5 | D. | 7.5E |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ln2 | B. | ln3 | C. | 2ln2 | D. | $ln\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com