A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,1) | C. | (1,e) | D. | (e,4) |
分析 利用換元法求出函數f(x)的解析式,然后根據函數與方程的關系進行轉化,構造函數,判斷函數的零點即可得到結論.
解答 解:∵f(x)是定義在(0,+∞)上單調函數,且對?x∈(0,+∞),都有f(f(x)-lnx)=e+1,
∴設f(x)-lnx=t,則f(t)=e+1,
即f(x)=lnx+t,
令x=t,則f(t)=lnt+t=e+1,
則t=e,
即f(x)=lnx+e,
函數的導數f′(x)=$\frac{1}{x}$,
則由f(x)-f′(x)=e得lnx+e-$\frac{1}{x}$=e,
即lnx-$\frac{1}{x}$=0,
設h(x)=lnx-$\frac{1}{x}$,
則h(1)=ln1-1=-1<0,h(e)=lne-$\frac{1}{e}$=1-$\frac{1}{e}$>0,
∴函數h(x)在(1,e)上存在一個零點,即方程f(x)-f′(x)=e的實數解所在的區(qū)間是(1,e),
故選:C.
點評 本題主要考查函數與方程的應用,根據函數單調性的性質,利用換元法求出函數的解析式是解決本題的關鍵.綜合性較強,涉及的知識點較多.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 3 | C. | 4 | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,$\frac{1}{2e}$) | C. | (-∞,0)∪($\frac{1}{2e}$,+∞) | D. | ($\frac{1}{2e}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $\frac{7}{2}$ | C. | 5 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{9}{2}d{m^3}$ | B. | 4dm3 | C. | $\frac{7}{2}d{m^3}$ | D. | 3dm3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com