【題目】已知定義在R上的偶函數(shù)滿(mǎn)足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:
①f(2)=0;
②x=﹣4為函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸;
③函數(shù)y=f(x)在[8,10]單調(diào)遞增;
④若方程f(x)=m在[﹣6,﹣2]上的兩根為x1 , x2 , 則x1+x2=﹣8.
上述命題中所有正確命題的序號(hào)為 .
【答案】①②④
【解析】解:∵f(x)是定義在R上的偶函數(shù),
∴f(﹣x)=f(x),
可得f(﹣2)=f(2),
在f(x+4)=f(x)+f(2),中令x=﹣2得
f(2)=f(﹣2)+f(2),
∴f(﹣2)=f(2)=0,
∴f(x+4)=f(x),∴函數(shù)f(x)是周期為4的周期函數(shù),又當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,結(jié)合函數(shù)的奇偶性畫(huà)出函數(shù)f(x)的簡(jiǎn)圖,如圖所示.
從圖中可以得出:
②x=﹣4為函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸;
③函數(shù)y=f(x)在[8,10]單調(diào)遞減;
④若方程f(x)=m在[﹣6,﹣2]上的兩根為x1,x2,則x1+x2=﹣8.
所以答案是:①②④.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識(shí),掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系,以及對(duì)函數(shù)單調(diào)性的判斷方法的理解,了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)n≥3,n∈N* , 在集合{1,2,…,n}的所有元素個(gè)數(shù)為2的子集中,把每個(gè)子集的較大元素相加,和記為a,較小元素之和記為b.
(1)當(dāng)n=3時(shí),求a,b的值;
(2)求證:對(duì)任意的n≥3,n∈N* , 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)擬建立一個(gè)藝術(shù)搏物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過(guò)層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專(zhuān)家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從6個(gè)招標(biāo)總是中隨機(jī)抽取3個(gè)總題,已知這6個(gè)招標(biāo)問(wèn)題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為 ,甲、乙兩家公司對(duì)每題的回答都是相獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)2道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng).
(1)求f(x)的解析式;
(2)若g(x)=f(x)x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對(duì)(0,+∞)恒成立,且 ,則f(x)的單調(diào)遞增區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱(chēng)形如以下形式的等式具有“穿墻術(shù)”: 2 = ,3 = ,4 = ,5 =
則按照以上規(guī)律,若8 = 具有“穿墻術(shù)”,則n=( )
A.7
B.35
C.48
D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合M={x|x2+x﹣2>0}, ,則(UM)∩N=( 。
A.[﹣2,0]
B.[﹣2,1]
C.[0,1]
D.[0,2]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com