在極坐標(biāo)系中,直線的極坐標(biāo)方程為上任意一點,點P在射線OM上,且滿足,記點P的軌跡為。
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)求曲線上的點到直線距離的最大值。

(Ⅰ)ρ=2sinθ (ρ≠0);(Ⅱ)1+

解析試題分析:(Ⅰ)借助點P、M的關(guān)系求出曲線C2的極坐標(biāo)方程;(Ⅱ)將極坐標(biāo)轉(zhuǎn)化成直角坐標(biāo)下的方程求出圓上的點到直線的最大距離.
試題解析:(Ⅰ)設(shè)P(ρ,θ),M(ρ1,θ),依題意有ρ1sinθ=2,ρρ1=4.
消去ρ1,得曲線C2的極坐標(biāo)方程為ρ=2sinθ (ρ≠0).
(Ⅱ)將C2,C3的極坐標(biāo)方程化為直角坐標(biāo)方程,得
C2:x2+(y-1)2=1,C3:x-y=2.      
C2是以點(0,1)為圓心,以1為半徑的圓,圓心到直線C3的距離d=,
故曲線C2上的點到直線C3距離的最大值為1+
考點:1、極坐標(biāo)方程;2、極坐標(biāo)方程與直角坐標(biāo)方程的互化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點都在C2上,且AB,C,D依逆時針次序排列,點A的極坐標(biāo)為,
(1)求點A,B,C,D的直角坐標(biāo);
(2)設(shè)PC1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建坐標(biāo)系,已知曲線,已知過點的直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點.
(Ⅰ)寫出曲線和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,求圓上的點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知圓的圓心,半徑.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為為參數(shù)),直線交圓兩點,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以直角坐標(biāo)系的原點O為極點,軸的正半軸為極軸,已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,),若直線過點P,且傾斜角為,圓C以M為圓心,4為半徑。
(I)求直線的參數(shù)方程和圓C的極坐標(biāo)方程。
(II)試判定直線與圓C的位置關(guān)系。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線的參數(shù)方程為為參數(shù)),將曲線上所有點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)伸長為原來的倍,得到曲線.
(Ⅰ)求曲線的普通方程;
(Ⅱ)已知點,曲線軸負(fù)半軸交于點,為曲線上任意一點, 求
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
已知極坐標(biāo)的極點在平面直角坐標(biāo)系的原點處,極軸與軸的正半軸重合,且長度單位相同.直線的極坐標(biāo)方程為:,點,參數(shù)
(Ⅰ)求點軌跡的直角坐標(biāo)方程;
(Ⅱ)求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中以為極點,軸正半軸為極軸建立坐標(biāo)系.圓,直線的極坐標(biāo)方程分別為.
(I)
(II)

查看答案和解析>>

同步練習(xí)冊答案