已知曲線(xiàn)C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點(diǎn)都在C2上,且AB,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為
(1)求點(diǎn)A,BC,D的直角坐標(biāo);
(2)設(shè)PC1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

(1)A(1,),B(-,1),C(-1,-),D(,-1).(2)[32,52]

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn),直線(xiàn)的極坐標(biāo)方程為.
(1)判斷點(diǎn)與直線(xiàn)l的位置關(guān)系,說(shuō)明理由;
(2)設(shè)直線(xiàn)與曲線(xiàn)C的兩個(gè)交點(diǎn)為A、B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,,曲線(xiàn)的參數(shù)方程為.點(diǎn)是曲線(xiàn)上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為.
(1)寫(xiě)出曲線(xiàn)的普通方程和極坐標(biāo)方程;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從原點(diǎn)O引直線(xiàn)交直線(xiàn)2x+4y-1=0于點(diǎn)M,P為OM上一點(diǎn),已知OP·OM=1,求P點(diǎn)所在曲線(xiàn)的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線(xiàn)的極坐標(biāo)方程為,直線(xiàn)的參數(shù)方程為:為參數(shù)),兩曲線(xiàn)相交于兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)若的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線(xiàn)l經(jīng)過(guò)點(diǎn),傾斜角α=,圓C的極坐標(biāo)方程為.
(1)寫(xiě)出直線(xiàn)l的參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(2)設(shè)l與圓C相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為為參數(shù)).
(Ⅰ)寫(xiě)出直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換得到曲線(xiàn),設(shè)為曲線(xiàn)上任一點(diǎn),求的最小值,并求相應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,參數(shù)方程為的直線(xiàn),被以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,極坐標(biāo)方程為的曲線(xiàn)所截,求截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為上任意一點(diǎn),點(diǎn)P在射線(xiàn)OM上,且滿(mǎn)足,記點(diǎn)P的軌跡為。
(Ⅰ)求曲線(xiàn)的極坐標(biāo)方程;
(Ⅱ)求曲線(xiàn)上的點(diǎn)到直線(xiàn)距離的最大值。

查看答案和解析>>

同步練習(xí)冊(cè)答案