11.設(shè)數(shù)列{an}的前n項(xiàng)和${S_n}={2^{n+2}}-4$,數(shù)列{bn}滿足${b_n}=\frac{1}{{nlo{g_2}\;{a_n}}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)運(yùn)用數(shù)列的遞推式:當(dāng)n=1時(shí),a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1,化簡整理,即可得到數(shù)列{an}的通項(xiàng)公式;
(2)求得$_{n}=\frac{1}{n{log}_{2}{2}^{n+1}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,再由數(shù)列的求和方法:裂項(xiàng)相消求和,即可得到所求和.

解答 解:(1)當(dāng)n=1時(shí),${a}_{1}={S}_{1}={2}^{3}-4=4$.
當(dāng)n≥2時(shí),${a}_{n}={S}_{n}-{S}_{n-1}={2}^{n+2}-{2}^{n+1}={2}^{n+1}(對(duì)n=1也成立)$,
故所求${a}_{n}={2}^{n+1}(n∈{N}^{*})$;
(2)由$_{n}=\frac{1}{n{log}_{2}{2}^{n+1}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
Tn=b1+b2+b3+…+bn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n}-\frac{1}{n+1})$
=$1-\frac{1}{n+1}=\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列的遞推式,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a,b∈R,且(a+i)i=b+i,則( 。
A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.現(xiàn)由某校高二年級(jí)四個(gè)班學(xué)生34人,其中一、二、三、四班分別為7人、8人、9人、10人,他們自愿組成數(shù)學(xué)課外小組.
(1)選其中一人為負(fù)責(zé)人,有多少種不同的選法?
(2)每班選一名組長,有多少種不同的選法?
(3)推選二人做中心發(fā)言,這二人需來自不同的班級(jí),有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|$=1,|$\overrightarrow b$|=2,$(3\overrightarrow a-\overrightarrow b)$⊥$(\overrightarrow a+\overrightarrow b)$,則向量$\overrightarrow a$與向量$\overrightarrow b$夾角的余弦值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.等差數(shù)列{an}中,Sn是其前n項(xiàng)和,a1=-2017,$\frac{S2009}{2009}$-$\frac{S2007}{2007}$=2,則S2017的值為-2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法中正確的是( 。
A.若兩個(gè)向量相等,則它們的起點(diǎn)和終點(diǎn)分別重合
B.模相等的兩個(gè)平行向量是相等向量
C.若$\overrightarrow{a}$和$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
D.零向量與其它向量都共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)化簡$\frac{cos(α-\frac{3}{2}π)}{sin(\frac{π}{2}+α)}$•sin(α-π)•cos(2π-α);
(Ⅱ)已知sin θ=$\frac{12}{13}$,θ為銳角,求cos($\frac{π}{4}$-θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知2cosθ+sinθ=0,且θ∈(0,π).
(Ⅰ)分別求tanθ,sinθ,cosθ的值;
(Ⅱ)若sin(θ-φ)=$\frac{{\sqrt{10}}}{10}$,$\frac{π}{2}$<φ<π,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}|=2$,且$\overrightarrow a•({\overrightarrow b-\overrightarrow a})=-6$,則$\overrightarrow a,\overrightarrow b$的夾角是$\frac{2π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案