1.若a,b∈R,且(a+i)i=b+i,則( 。
A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1

分析 利用復(fù)數(shù)的運算法則、復(fù)數(shù)相等即可得出.

解答 解:a,b∈R,且(a+i)i=b+i,
則-1+ai=b+i,∴b=-1,a=1,
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、復(fù)數(shù)相等,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.向△ABC內(nèi)任意投一點P,若△ABC面積為s,則△PBC的面積小于等于$\frac{s}{2}$的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足${a_{n+1}}-{a_n}=4n+1({n∈{N^*}})$,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{{4n({n+1})}}{{{a_n}{a_{n+1}}}}({n∈{N^*}})$,設(shè)數(shù)列{bn}的前n項和Sn,證明$\frac{4}{3}≤{S_n}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,1,0),$\overrightarrow b=(1,-2,2)$,且$k\overrightarrow a$與$\overrightarrow a+\overrightarrow b$互相垂直,則k的值為( 。
A.2B.0C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an},{bn}滿足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,則b2017=( 。
A.$\frac{2017}{2018}$B.$\frac{2018}{2017}$C.$\frac{2019}{2018}$D.$\frac{2018}{2019}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個圖形是兩個變x,y的散點圖,其中具有線性相關(guān)關(guān)系的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列2008,2009,1,-2008,…若這個數(shù)列從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2017項之和S2017等于(  )
A.0B.2008C.2017D.4017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)三個方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至多有二個方程有實根,求實數(shù)a的取值范圍.
(2)已知虛數(shù)z在復(fù)平面上對應(yīng)點Z,若z+$\frac{1}{z}$∈R,求點Z的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和${S_n}={2^{n+2}}-4$,數(shù)列{bn}滿足${b_n}=\frac{1}{{nlo{g_2}\;{a_n}}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案