15.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的一條漸近線過點(2,$\sqrt{21}$),則此雙曲線的離心率為( 。
A.2B.$\frac{5}{2}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{13}}{2}$

分析 求出雙曲線的漸近線,建立a,b的關(guān)系,結(jié)合雙曲線離心率的公式進(jìn)行求解即可.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$±\frac{a}$x,
∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1的一條漸近線過點(2,$\sqrt{21}$),
∴(2,$\sqrt{21}$)在y=$\frac{a}$x上,即$\frac{2b}{a}$=$\sqrt{21}$,即$\frac{a}$=$\frac{\sqrt{21}}{2}$,
則雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{1+\frac{21}{4}}$=$\frac{5}{2}$,
故選:B.

點評 本題主要考查雙曲線離心率的計算,根據(jù)點與漸近線的關(guān)系求出a,b的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,頂點A1在底面ABC內(nèi)的射影恰好是AB的中點O,且AB=BC=2.OA1=2,
(1)求證:平面ABB1A1⊥平面BCC1B1;
(2)求直線A1C與平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)分別由下表給出:
x123
f(x)131
x123
g(x)321
若f(g(x))=3,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=sin($\frac{π}{3}$-2x)的單調(diào)遞增區(qū)間是(  )
A.[-kπ-$\frac{π}{12}$,-kπ+$\frac{5π}{12}$],k∈ZB.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$],k∈Z
C.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)△ABC的內(nèi)角A,B,C,已知C=$\frac{π}{3}$,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=(2,sinB)共線,則△ABC的內(nèi)角A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.
(1)A=45°,B=60°,a=$\sqrt{2}$,求b的值
(2)若△ABC的面積為$\frac{{\sqrt{3}}}{2}$,$c=2,A=\frac{π}{3}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(2cosωx,1),$\overrightarrow$=($\sqrt{3}$sinωx-cosωx,1)(ω>0),函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,若函數(shù)f(x)的圖象與x軸的兩個相鄰交點的距離為$\frac{π}{2}$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間
(2)若x∈($\frac{7π}{12}$,$\frac{5π}{6}$)時,f(x)=-$\frac{6}{5}$,求cos2x的值
(3)若cosx$≥\frac{1}{2}$,x∈(0,π),且f(2x)=m有且僅有一個實根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$(\frac{1}{2})^{|x+m-1|}$是偶函數(shù),g(x)=$\left\{\begin{array}{l}{f(x)}&{x≥0}\\{{x}^{2}+2x+m}&{x<0}\end{array}\right.$,則方程g(x)=|x+$\frac{3}{4}$|實數(shù)根的個數(shù)是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\frac{sin(\frac{π}{2}-x)cos(2π-x)tan(-x+5π)}{tan(π+x)sin(\frac{π}{2}+x)}$,則f($-\frac{43π}{3}$)的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$-\frac{\sqrt{3}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案