【題目】某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+ x3(萬元),已知產(chǎn)品單價(jià)P(萬元)與產(chǎn)品件數(shù)x滿足:p2= ,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元.
(1)設(shè)產(chǎn)量為x件時(shí),總利潤為L(x)(萬元),求L(x)的解析式;
(2)產(chǎn)量x定為多少件時(shí)總利潤L(x)(萬元)最大?并求最大值(精確到1萬元).
【答案】(1) (2)產(chǎn)量x定為25件時(shí)總利潤L(x)最大,約為883萬元.
【解析】試題分析:(1)由題可知生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬元,所以把x=100,P=50代入到p2=中求出k的值確定出P的解析式,然后根據(jù)總利潤=總銷售額﹣總成本得出L(x)即可;(2)令L′(x)=0求出x的值,此時(shí)總利潤最大,最大利潤為L(25).
試題解析:解:(1)由題意有,解得k=25×104,∴,
∴總利潤=;
(2)由(1)得,令,
令,得,∴t=5,于是x=t2=25,
則x=25,所以當(dāng)產(chǎn)量定為25時(shí),總利潤最大.
這時(shí)L(25)≈﹣416.7+2500﹣1200≈883.
答:產(chǎn)量x定為25件時(shí)總利潤L(x)最大,約為883萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要測量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測得塔頂A的仰角是45°,在D點(diǎn)測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為( )
A.10 m
B.20m
C.20 m
D.40m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè) .
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,A、B、C的對邊分別為a,b,c,若 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=(a+1)x﹣2+1(a>0)的圖象恒過定點(diǎn)A,且點(diǎn)A又在函數(shù) 的圖象上.
(1)求實(shí)數(shù)a的值;
(2)解不等式f(x)< ;
(3)函數(shù)h(x)=|g(x+2)﹣2|的圖象與直線y=2b有兩個(gè)不同的交點(diǎn)時(shí),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是
①任取x>0,均有3x>2x .
②當(dāng)a>0,且a≠1時(shí),有a3>a2 .
③y=( )﹣x是增函數(shù).
④y=2|x|的最小值為1.
⑤在同一坐標(biāo)系中,y=2x與y=2﹣x的圖象關(guān)于y軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊長分別是a,b,c.滿足2acosC+ccosA=b.
(Ⅰ)求角C的大;
(Ⅱ)求sinAcosB+sinB的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空間四邊形ABCD中,AD=BC=2,E,F(xiàn)分別是AB,CD的中點(diǎn),EF= ,則異面直線AD,BC所成的角的補(bǔ)角為( )
A.120°
B.60°
C.90°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:A1C1=AB1;
(Ⅱ)若AC⊥AB1 , ∠BCC1=120°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com