已知雙曲線的中心在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,兩準(zhǔn)線間的距離為,并且與直線y=(x-4)相交所得線段的中點(diǎn)的橫坐標(biāo)為-,求這個(gè)雙曲線的方程.
雙曲線方程為-=1.
設(shè)雙曲線的方程為=1(a>0,b>0),直線與雙曲線兩交點(diǎn)為A(x1,y1)、B(x2,y2).由題意知=,即=.
得(9b2-a2)x2+8a2x-16a2-9a2b2=0.
∵9b2-a2≠0,由韋達(dá)定理得x1+x2=,即=-.∴7a2=9b2.
∴所求雙曲線方程為-=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線-=1,P為雙曲線上一點(diǎn),F(xiàn)1、F2是雙曲線的兩個(gè)焦點(diǎn),并且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為(O為原點(diǎn)),則兩條漸近線的夾角為(    )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)P(3,4)且與雙曲線-=1只有一個(gè)公共點(diǎn)的直線共有______________條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線C:2x2y2=2與點(diǎn)P(1,2)

(1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使lC分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線y=kx+1與雙曲線x2-2y2=1有且僅有一個(gè)公共點(diǎn),則實(shí)數(shù)k的值有(    )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)N(1,2),過點(diǎn)N的直線交雙曲線x2-=1于A、B兩點(diǎn),且=+).
(1)求直線AB的方程;
(2)若過N的直線交雙曲線于C、D兩點(diǎn),且·=0,那么A、B、C、D四點(diǎn)是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等軸雙曲線的兩個(gè)頂點(diǎn)分別為,垂直于雙曲線實(shí)軸的直線與雙曲線交于    兩點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的方程為,若直線截雙曲線的一支所得弦長為5
(I)求的值;
(II)設(shè)過雙曲線上的一點(diǎn)的直線與雙曲線的兩條漸近線分別交于,且點(diǎn)分有向線段所成的比為。當(dāng)時(shí),求為坐標(biāo)原點(diǎn))的最大值和最小值

查看答案和解析>>

同步練習(xí)冊答案