A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | (6-2$\sqrt{5}$) | D. | $\frac{5}{4}$ |
分析 由M∩N≠∅,可得直線2x+y-4=0與圓x2+y2+2mx+2ny=0有交點,即圓心(-m,-n)到直線2x+y-4=0的距離不大于半徑,建立不等式,三角換元,即可求出m2+n2的最小值.
解答 解:由題意,可知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},且M∩N≠∅,
∴表示直線2x+y-4=0與圓x2+y2+2mx+2ny=0有交點,即圓心(-m,-n)到直線2x+y-4=0的距離不大于半徑,
∴d=$\frac{|2m+n+4|}{\sqrt{{2}^{2}+{1}^{2}}}$≤$\sqrt{{m}^{2}+{n}^{2}}$,
設(shè)m2+n2=r2,m=rcosα,n=rsinα,
∴-$\sqrt{5}$r≤2rcosα+rsinα+4≤$\sqrt{5}$r,
∴r≥$\frac{4}{\sqrt{5}-2cosα-sinα}$
∴r≥$\frac{4}{2\sqrt{5}}$,
∴r2≥$\frac{4}{5}$,
∴m2+n2的最小值為$\frac{4}{5}$.
故選:A.
點評 本題考查的知識點是集合的交集的定義及運算,考查直線與圓的位置關(guān)系,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com