10.集合A={x|x=2n,n∈Z},B={1,2,3},則A∩B的子集的個數(shù)為( 。
A.2B.3C.4D.8

分析 先求出A∩B={1,2},由此能求出A∩B的子集的個數(shù).

解答 解:∵集合A={x|x=2n,n∈Z},B={1,2,3},
∴A∩B={1,2},
∴A∩B的子集的個數(shù)為22=4.
故選:C.

點評 本題考查兩個集合的交集中子集個數(shù)的求法,是基礎題,解題時要認真審題,注意交集性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x)=ax2+bx+1,3≤f(1)≤5,2≤f(-1)≤3,則f(-2)的取值范圍為[6,11].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,AB是拋物線y2=2px(p>0)的一條經(jīng)過焦點F的弦,AB與兩坐標軸不垂直,已知點M(-1,0),∠AMF=∠BMF,則p的值是(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$sinx,-1),$\overrightarrow$=(2cosx,1-2cos2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的最小正周期,并寫出f(x)的對稱軸方程;
(2)當x∈(-$\frac{5π}{6}$,-$\frac{π}{3}$)時,設經(jīng)過函數(shù)f(x)圖象上任意不同兩點的直線的斜率為k,試判斷k的符號,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.“點A的坐標是(kπ,0),k∈Z”是“y=tanx關于點A對稱”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知集合A={1,2,3},B={m,3,6},A∩B={2,3},則實數(shù)m的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設集合A={1,3,x},B={1,x2-x+1},求A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知x=$\frac{1}{2}$,y=$\frac{1}{3}$,求$\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}$-$\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合M={(x,y)|2x+y-4=0},N={(x,y)|x2+y2+2mx+2ny=0},若M∩N≠∅,則m2+n2的最小值( 。
A.$\frac{4}{5}$B.$\frac{3}{4}$C.(6-2$\sqrt{5}$)D.$\frac{5}{4}$

查看答案和解析>>

同步練習冊答案