【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)解析式為
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

【答案】解:(Ⅰ)設x∈[0,1],則﹣x∈[﹣1,0].∴f(x)= =4x﹣2x又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x
所以,f(x)在[0,1]上的解析式為f(x)=2x﹣4x
(Ⅱ)當x∈[0,1],f(x)=2x﹣4x=﹣(2x2+2x
∴設t=2x(t>0),則y=﹣t2+t∵x∈[0,1],∴t∈[1,2]
當t=1時x=0,f(x)max=0;當t=2時x=1,f(x)min=﹣2
【解析】(Ⅰ)設x∈[0,1],則﹣x∈[﹣1,0],利用條件結合奇函數(shù)的定義求f(x)在[0,1]上的解析式;(Ⅱ)設t=2x(t>0),則y=﹣t2+t,利用二次函數(shù)的性質求f(x)在[0,1]上的最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐S﹣ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結論中: ①異面直線SB與AC所成的角為90°;
②直線SB⊥平面ABC;
③面SBC⊥面SAC;
④點C到平面SAB的距離是

其中正確結論的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)的定義域是(﹣1,1),則函數(shù)f(2x﹣1)的定義域為(
A.(0,1)
B.(﹣1,1)
C.(﹣3,1)
D.(﹣1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}中a2=2,a5= ,則a1a2+a2a3+a3a4+…+anan+1等于(
A.16(1﹣4n
B.16(1﹣2n
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=3x2﹣kx﹣8,x∈[1,5].
(1)當k=12時,求f(x)的值域;
(2)若函數(shù)f(x)具有單調性,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖示:半圓O的直徑為2,A為直徑延長線上的一點,OA=2,B為半圓上任意一
點,以AB為一邊作等邊三角形ABC.則四邊形OACB的面積最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設離心率為 的橢圓 的左、右焦點為 , PE上一點, , 內切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點C、D在直線,A、B在橢圓E,若矩形ABCD的周長為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,a,b,c分別是角A,B,C的對邊,且2cosAcosC(1tanAtanC)1

1B的大;

2b,求ABC面積的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】脫貧是政府關注民生的重要任務,了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取100個農戶,考察每個農戶的年收入與年積蓄的情況進行分析,設第i個農戶的年收入xi(萬元),年積蓄yi(萬元),經過數(shù)據處理得 . (Ⅰ)已知家庭的年結余y對年收入x具有線性相關關系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農戶年積蓄在5萬以上,即稱該農戶已達小康生活,請預測農戶達到小康生活的最低年收入應為多少萬元?
附:在 = x+ 中, = = ,其中 為樣本平均值.

查看答案和解析>>

同步練習冊答案