【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長為 時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
【答案】解:(Ⅰ)依題意可得圓心C(a,2),半徑r=2, 則圓心到直線l:x﹣y+3=0的距離 ,
由勾股定理可知 ,代入化簡得|a+1|=2,
解得a=1或a=﹣3,
又a>0,所以a=1;
(Ⅱ)由(1)知圓C:(x﹣1)2+(y﹣2)2=4,圓心坐標(biāo)為(1,2),圓的半徑r=2
由(3,5)到圓心的距離為 = >r=2,得到(3,5)在圓外,
∴①當(dāng)切線方程的斜率存在時(shí),設(shè)方程為y﹣5=k(x﹣3)
由圓心到切線的距離d= =r=2,
化簡得:12k=5,可解得 ,
∴切線方程為5x﹣12y+45=0;
②當(dāng)過(3,5)斜率不存在直線方程為x=3與圓相切.
由①②可知切線方程為5x﹣12y+45=0或x=3
【解析】(Ⅰ)根據(jù)圓的方程找出圓心坐標(biāo)與圓的半徑,然后利用點(diǎn)到直線的距離公式表示出圓心到直線l的距離d,然后根據(jù)垂徑定理得到弦心距,弦的一半及圓的半徑成直角三角形,利用勾股對了列出關(guān)于a的方程,求出方程的解即可得到a的值,然后由a大于0,得到滿足題意a的值;(Ⅱ)把(Ⅰ)求出a的值代入圓的方程中確定出圓的方程,即可得到圓心的坐標(biāo),并判斷得到已知點(diǎn)在圓外,分兩種情況:當(dāng)切線的斜率不存在時(shí),得到x=3為圓的切線;當(dāng)切線的斜率存在時(shí),設(shè)切線的斜率為k,由(3,5)和設(shè)出的k寫出切線的方程,根據(jù)直線與圓相切時(shí)圓心到直線的距離等于圓的半徑,利用點(diǎn)到直線的距離公式表示出圓心到切線的距離d,讓d等于圓的半徑即可列出關(guān)于k的方程,求出方程的解即可得到k的值,把k的值代入所設(shè)的切線方程即可確定出切線的方程.綜上,得到所有滿足題意的切線的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)不等式組 所表示的平面區(qū)域是W,從區(qū)域W中隨機(jī)取點(diǎn)M(x,y).
(1)若x,y∈Z,求點(diǎn)M位于第一象限的概率;
(2)若x,y∈R,求|OM|≥1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在正實(shí)數(shù),使得對任意,都有,且恒成立,則稱函數(shù)為上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時(shí), ,若為上的“2017的型增函數(shù)”,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為( , ),由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)( π,0),φ∈(﹣ , ).
(1)求這條曲線的函數(shù)解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,當(dāng)時(shí),求函數(shù)的最大值;
(3)若且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=4an﹣3(n∈N*).
(Ⅰ)證明:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示直角梯形ABCD中,AB∥DC,∠A=90°,AB=AD=2DC=4,畫出該梯形的直觀圖A′B′C′D′,并寫出其做法(要求保留作圖過程的痕跡.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30—7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00—8:00之間,則他在離開家之前能拿到報(bào)紙的概率( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點(diǎn)B(﹣2,0)的動直線l與圓A相交于M、N兩點(diǎn)
(1)求圓A的方程.
(2)當(dāng)|MN|=2 時(shí),求直線l方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com