考點(diǎn):等差數(shù)列的性質(zhì)
專(zhuān)題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)設(shè){an}中首項(xiàng)為a1,公差為d.lga1,lga2,lga4成等差數(shù)列,把11和d代入求得d,進(jìn)而分別當(dāng)d=0,整理可得 bn+1•bn=1,進(jìn)而判斷出{bn}為等比數(shù)列;進(jìn)而討論d=a1時(shí),整理即可判斷出{bn}為等比數(shù)列.
(2)把第一問(wèn)所求結(jié)論分別代入即可求出數(shù)列{an}的首項(xiàng)a1和公差d.
解答:
(1)證明:設(shè){a
n}中首項(xiàng)為a
1,公差為d.
∵lga
1,lga
2,lga
4成等差數(shù)列,∴2lga
2=lga
1+lga
4,
∴a
22=a
1•a
4.
即(a
1+d)
2=a
1(a
1+3d),∴d=0或d=a
1.
當(dāng)d=0時(shí),a
n=a
1,b
n=
=
,∴
=1,∴{b
n}為等比數(shù)列;
當(dāng)d=a
1時(shí),a
n=na
1,b
n=
=
,∴
=
,∴{b
n}為等比數(shù)列.
綜上可知{b
n}為等比數(shù)列.
(2)解:當(dāng)d=0時(shí),S
3=
=
,所以a
1=
;
當(dāng)d=a
1時(shí),S
3=
=
,故a
1=3=d.
點(diǎn)評(píng):本題主要考查等差數(shù)列與等比數(shù)列的綜合以及分類(lèi)討論思想的應(yīng)用,涉及數(shù)列的公式多,復(fù)雜多樣,故應(yīng)多下點(diǎn)功夫記憶.