6.($\sqrt{8}$)${\;}^{-\frac{2}{3}}$-(3π)0+$\sqrt{(-2)^{2}}$=$\frac{3}{2}$.

分析 利用分?jǐn)?shù)指數(shù)冪的性質(zhì)、運(yùn)算法則求解.

解答 解:($\sqrt{8}$)${\;}^{-\frac{2}{3}}$-(3π)0+$\sqrt{(-2)^{2}}$
=(${2}^{\frac{3}{2}}$)${\;}^{-\frac{2}{3}}$-1+2
=$\frac{1}{2}+1$
=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評 本題考查有理數(shù)指數(shù)冪的化簡求值,是基礎(chǔ)題,解題時要認(rèn)真審題,注意有理數(shù)指數(shù)冪的性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=4x-2x+1+1(x<0)的值域是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以下命題中真命題的序號是( 。
①若棱柱被一平面所截,則分成的兩部分不一定是棱柱;
②有兩個面平行,其余各面都是梯形的幾何體叫棱臺;
③用一個平面去截圓錐,底面和截面之間的部分組成的幾何體叫圓臺;
④有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
A.③④B.①④C.①②④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在長方形ABCD中,AE=EB,三角形BEF的面積占長方形ABCD面積的$\frac{3}{16}$,那么BF:FC=3:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$tanα=2,則\frac{{{{sin}^2}α-{{cos}^2}α+2}}{{2{{sin}^2}α+{{cos}^2}α}}$等于( 。
A.$\frac{13}{9}$B.$\frac{11}{9}$C.$\frac{6}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對于任意的n∈N*,若數(shù)列{an}同時滿足下列兩個條件,則稱數(shù)列{an}具有“性質(zhì)m”:
①$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}$;          
②存在實數(shù)M,使得an≤M成立.
(1)數(shù)列{an}、{bn}中,an=n(n∈N*)、${b_n}=1-\frac{1}{n^2}$(n∈N*),判斷{an}、{bn}是否具有“性質(zhì)m”;
(2)若各項為正數(shù)的等比數(shù)列{cn}的前n項和為Sn,且${c_3}=\frac{1}{4}$,${S_3}=\frac{7}{4}$,證明:數(shù)列{Sn}具有“性質(zhì)m”,并指出M的取值范圍;
(3)若數(shù)列{dn}的通項公式${d_n}=\frac{{t\;(3•{2^n}-n)+1}}{2^n}$(n∈N*).對于任意的n≥3(n∈N*),數(shù)列{dn}具有“性質(zhì)m”,且對滿足條件的M的最小值M0=9,求整數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正三棱柱(底面是正三角形,側(cè)棱垂直于底面)ABC-A1B1C1的底面邊長為2,側(cè)棱AA1=2,則異面直線AB1與BC1所成角的余弦值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,$\frac{sinA}{a}$=$\frac{\sqrt{3}cosB}$.
(Ⅰ)求角B;
(Ⅱ)求sinAcosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩人參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,畫出莖葉圖如圖所示,乙的成績中有一個數(shù)個位數(shù)字模糊,在莖葉圖中用c表示.(把頻率當(dāng)作概率)
(Ⅰ)假設(shè)c=5,現(xiàn)要從甲,乙兩人中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度,你認(rèn)為派哪位學(xué)生參加比較合適?
(Ⅱ)假設(shè)數(shù)字c的取值是隨機(jī)的,求乙的平均分高于甲的平均分的概率.

查看答案和解析>>

同步練習(xí)冊答案