雙曲線的焦距為

[     ]

A.3
B.4
C.3
D.4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B.(如圖)
(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)
FA
AP
時,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為(  )
A、2
3
B、2
5
C、4
3
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的兩條漸進線方程分別為x-
3
y=0和x+
3
y=0,雙曲線上的點滿足不等式x2-3y2<0,已知雙曲線的焦距為4,則雙曲線的準線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-2,-1),則雙曲線的焦距為
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左頂點是圓x2+y2+2x-2=0的圓心,一條漸近線的方程為y=2x,則雙曲線的焦距為( 。

查看答案和解析>>

同步練習(xí)冊答案