【題目】一種擲硬幣走跳棋的游戲:在棋盤上標(biāo)有第1站、第2站、第3站、…、第100站,共100站,設(shè)棋子跳到第站的概率為,一枚棋子開始在第1站,棋手每擲一次硬幣,棋子向前跳動一次.若硬幣的正面向上,棋子向前跳一站;若硬幣的反面向上,棋子向前跳兩站,直到棋子跳到第99站(失敗)或者第100站(獲勝)時,游戲結(jié)束.
(1)求;
(2)求證:數(shù)列為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
【答案】(1),, (2)證明見解析 (3)
【解析】
(1)根據(jù)題意,分析可得棋子在1站是一個必然事件,即可得P1的值,進而分析棋子跳到2站以及棋子跳到3站的情況,據(jù)此求出P2、P3的值(2)根據(jù)題意,分析可得,變形可得,即可得結(jié)論(3)由(2)知,利用累加法求出,由對立事件的概率性質(zhì)求出.
(1)棋子開始在第1站是必然事件,;
棋子跳到第2站,只有一種情況,第一次擲硬幣正面向上,
其概率為;
棋子跳到第3站,有兩種情況,①第一次擲硬幣反面向上,其概率為;②前兩次擲硬幣都是正面向上,其概率為;
(2)棋子棋子跳到第站,有兩種情況:①棋子先跳到第n站,又?jǐn)S硬幣反面向上,其概率為;②棋子先跳到第站,又?jǐn)S硬幣正面向上,其概率為.故.
又,
數(shù)列…是以為首項,為公比的等比數(shù)列.
(3)由(2)得.
…
…
所以獲勝的概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+blnx(a,b∈R)在點(1,f(1))處的切線方程為yx﹣1.
(1)求ab的值;
(2)當(dāng)x>1時,f(x)0恒成立,求實數(shù)k的取值范圍;
(3)設(shè)g(x)=exx,求證:對于x∈(0,+∞),g(x)﹣f(x)>2恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面側(cè)面,,楔面是邊長為2的正三角形,點在側(cè)面的射影是矩形的中心,點在上,且
(1)證明:平面;
(2)求楔面與側(cè)面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進行系列促銷活動.經(jīng)市場調(diào)查和測算,該紀(jì)念品的年銷售量x(單位:萬件)與年促銷費用t(單位:萬元)之間滿足3-x與t+1成反比例.若不搞促銷活動,紀(jì)念品的年銷售量只有1萬件.已知工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬元,每生產(chǎn)1萬件紀(jì)念品另外需要投資32萬元.當(dāng)工廠把每件紀(jì)念品的售價定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷費的一半”之和時,則當(dāng)年的產(chǎn)量和銷量相等.(利潤=收入-生產(chǎn)成本-促銷費用)
(1)請把該工廠2017年的年利潤y(單位:萬元)表示成促銷費t(單位:萬元)的函數(shù);
(2)試問:當(dāng)2017年的促銷費投入多少萬元時,該工廠的年利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),無窮數(shù)列的首項.
(1)如果,寫出數(shù)列的通項公式;
(2)如果(且),要使得數(shù)列是等差數(shù)列,求首項的取值范圍;
(3)如果(且),求出數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地計劃在一處海灘建造一個養(yǎng)殖場.
(1)如圖1,射線OA,OB為海岸線,,現(xiàn)用長度為1千米的圍網(wǎng)PQ依托海岸線圍成一個的養(yǎng)殖場,問如何選取點P,Q,才能使養(yǎng)殖場的面積最大,并求其最大面積.
(2)如圖2,直線l為海岸線,現(xiàn)用長度為1千米的圍網(wǎng)依托海岸線圍成一個養(yǎng)殖場.方案一:圍成三角形OAB(點A,B在直線l上),使三角形OAB面積最大,設(shè)其為;方案二:圍成弓形CDE(點D,E在直線l上,C是優(yōu)弧所在圓的圓心且),其面積為;試求出的最大值和(均精確到0.01平方千米),并指出哪一種設(shè)計方案更好.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com