【題目】設(shè)函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))。
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在內(nèi)存在唯一極值點,求的取值范圍。
【答案】(1)的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為(2)
【解析】
(1)根據(jù)解析式可求得函數(shù)定義域為,求導(dǎo)后,根據(jù)可知;從而根據(jù)的符號可確定導(dǎo)函數(shù)的符號,從而得到函數(shù)的單調(diào)區(qū)間;(2)由(1)知時不滿足題意;當(dāng)時,將問題轉(zhuǎn)化為與在范圍內(nèi)有唯一交點;設(shè),利用導(dǎo)數(shù)可得到的單調(diào)性,從而得到在內(nèi)的圖象,進而得到的取值范圍.
(1)由題意得:函數(shù)的定義域為
則
當(dāng)時,
當(dāng)時,,函數(shù)單調(diào)遞減
當(dāng)時,,函數(shù)單調(diào)遞增
的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為
(2)由(1)知,當(dāng)時,在內(nèi)單調(diào)遞減
在內(nèi)不存在極值點
當(dāng)時,要使得在內(nèi)存在唯一極值點,則在存在唯一變號零點
即方程在內(nèi)存在唯一解,即與在范圍內(nèi)有唯一交點
設(shè)函數(shù),則
在單調(diào)遞減
又;當(dāng)時,
時,與在范圍內(nèi)有唯一交點
綜上所述:的取值范圍為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點分別為F1, F2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M.
(1)求點M的軌跡的方程;
(2)設(shè)與x軸交于點Q, 上不同于點Q的兩點R、S,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若,且,則的取值范圍是______.
(2)若,,且,則的取值范圍是______.
(3)已知,且,則的最小值是______.
(4)已知實數(shù),,若,,且,則的最小值______.
(5)已知實數(shù),,若,,則的最小值______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓過點,離心率為,左、右焦點分別為,過的直線交橢圓于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,F為橢圓C的右焦點,A是右準(zhǔn)線與x軸的交點,且AF=1.
(1)求橢圓C的方程;
(2)過橢圓C上頂點B的直線l交橢圓另一點D,交x軸于點M,若,求直線l的方程;
(3)設(shè)點,過點F且斜率不為零的直線m與橢圓C交于S,T兩點,直線TQ與直線x=2交于點S1,試問是否為定值?若是,求出這個定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面,,是的中點.
(1)證明:平面;
(2)求二面角的余弦值;
(3)若點在線段(不包含端點)上,且直線平面,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P(,1),Q(cosx,sinx),O為坐標(biāo)原點,函數(shù)f(x).
(1)求f(x)的解析式及最小正周期;
(2)若A為△ABC的內(nèi)角,f(A)=4,BC=3,△ABC的面積為,求AB+AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】武漢又稱江城,是湖北省省會城市,被譽為中部地區(qū)中心城市,它不僅有著深厚的歷史積淀與豐富的民俗文化,更有著眾多名勝古跡與旅游景點,每年來武漢參觀旅游的人數(shù)不勝數(shù),其中黃鶴樓與東湖被稱為兩張名片為合理配置旅游資源,現(xiàn)對已游覽黃鶴樓景點的游客進行隨機問卷調(diào)查,若不游玩東湖記1分,若繼續(xù)游玩東湖記2分,每位游客選擇是否游覽東湖景點的概率均為,游客之間選擇意愿相互獨立.
(1)從游客中隨機抽取3人,記總得分為隨機變量,求的分布列與數(shù)學(xué)期望;
(2)(i)若從游客中隨機抽取人,記總分恰為分的概率為,求數(shù)列的前10項和;
(ⅱ)在對所有游客進行隨機問卷調(diào)查過程中,記已調(diào)查過的累計得分恰為分的概率為,探討與之間的關(guān)系,并求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年以來精準(zhǔn)扶貧政策的落實,使我國扶貧工作有了新進展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個貧困發(fā)生率數(shù)據(jù)中任選兩個,求兩個都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
(的值保留到小數(shù)點后三位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com