已知點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD的邊長(zhǎng)為
3
的正方形.若PA=
6
,則球O的表面積為( 。
A、9πB、12π
C、18πD、6π
分析:由點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,將P,A,B,C,D補(bǔ)全為長(zhǎng)方體ABCD-A′B′C′D′,讓P與A′重合,則球O為該長(zhǎng)方體的外接球,長(zhǎng)方體的對(duì)角線(xiàn)PC即為球O的直徑.由此能求出球O的表面積.
解答:解:∵點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,
∴將P,A,B,C,D補(bǔ)全為長(zhǎng)方體ABCD-A′B′C′D′,
讓P與A′重合,則球O為該長(zhǎng)方體的外接球,長(zhǎng)方體的對(duì)角線(xiàn)PC即為球O的直徑.
∵ABCD是邊長(zhǎng)為
3
的正方形,PA⊥平面ABCD,PA=
6

∴PC2=AP2+AC2=6+6=12,
∴2R=2
3
,R=OP=
3
,
球O的表面積S=4πR2=12π.
故選:B.
點(diǎn)評(píng):本題考查直線(xiàn)與平面垂直的性質(zhì),考查球內(nèi)接多面體的應(yīng)用,“補(bǔ)形”是關(guān)鍵,考查分析、轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•遼寧)已知點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD是邊長(zhǎng)為2
3
正方形.若PA=2
6
,則△OAB的面積為
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P,A,B,C,D都是直徑為3的球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD是正方形,若PA=1,則幾何體P-ABCD的體積為
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P,A,B,C,D是球O表面上的點(diǎn),PA⊥平面ABCD,四邊形ABCD是邊長(zhǎng)為2正方形.若PA=2
2
,則球O的體積為
32
3
π
32
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P,A,B,C,D是球O的球面上的五點(diǎn),正方形ABCD的邊長(zhǎng)為2
3
,PA⊥面ABCD,PA=2
6
,則此球的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P,A,B,C是球O表面上的四個(gè)點(diǎn),且PA,PB,PC兩兩成60°角,PA=PB=PC=4cm,則球的表面積為
 
cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案