分析 (Ⅰ)將a=2代入f(x),表示出f(x)的分段形式,結(jié)合函數(shù)的單調(diào)性求出不等式的解集即可;(Ⅱ)問題轉(zhuǎn)化為$\frac{|x+1|}{|x-1|+|x+3|}$≤$\frac{1}{2}$,求出a的最小值即可.
解答 解:(Ⅰ)當(dāng)a=-2時(shí),f(x)=$\left\{\begin{array}{l}{1-3x,x<-1}\\{3-x,-1≤x≤1}\\{3x-1,x>1}\end{array}\right.$,
由f(x)的單調(diào)性及f(-$\frac{4}{3}$)=f(2)=5,
得f(x)>5的解集為{x|x<-$\frac{4}{3}$,或x>2}.…(5分)
(Ⅱ)由f(x)≤a|x+3|得a≥$\frac{|x+1|}{|x-1|+|x+3|}$,
由|x-1|+|x+3|≥2|x+1|得$\frac{|x+1|}{|x-1|+|x+3|}$≤$\frac{1}{2}$,得a≥$\frac{1}{2}$.
(當(dāng)且僅當(dāng)x≥1或x≤-3時(shí)等號(hào)成立)
故a的最小值為$\frac{1}{2}$.…(10分)
點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分段函數(shù),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,0] | B. | (-∞,-2]∪[0,+∞) | C. | [0,2] | D. | (-∞,0]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com