已知P(x,y),A(-1,0),向量與=(1,1)共線。
(1)求y關(guān)于x的函數(shù)解析式;
(2)是否在直線y=2x和直線y=3x上分別存在一點(diǎn)B、C,使得滿足∠BPC為銳角時(shí)x取值集合為{x| x<-或x>}?若存在,求出這樣的B、C的坐標(biāo);若不存在,說明理由。
(1)(2)存在 B(2,4),C(-1,-3)或
解析試題分析:(1)與=(1,1)共線,所以
(2)存在 B(2,4),C(-1,-3)或
設(shè)B(b,2b),C(c,3c),∠BPC為銳角 等價(jià)于
得+(2-3b-4c)x+1-2b-3c+7bc>0,因?yàn)榻饧莧x| x<-或x> }
(2-3b-4c)=0,1-2b-3c+7bc=-14
解得b=" 2" ,c=" -1" 或b=,c=
考點(diǎn):向量運(yùn)算及向量共線
點(diǎn)評(píng):兩向量共線,則有,第二問中將角看做兩向量夾角,從而將確定角的范圍轉(zhuǎn)化為向量數(shù)量積滿足的條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求證:恒為銳角;
(Ⅱ)若四邊形為菱形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量=(,1),=(,1),R.
(1)當(dāng)時(shí),求向量 +的坐標(biāo);
(2)若函數(shù)|+|2為奇函數(shù),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知向量,函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)在中,分別是角A, B, C的對(duì)邊,且,且
求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
梯形ABCD中,AB∥CD,AB=2CD,M、N分別是CD和AB的中點(diǎn),若=a,=b,試用a、b表示和,則=________,=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com