已知=(1-t,1-t,t),=(2,t,t),則|-|的最小值為___________。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山東省博興二中2008屆高三第一次月考(數(shù)學(xué)理)新人教版 題型:044
已知函數(shù),t為常數(shù),且t>0.
(1)若曲線y=f(x)上一點(diǎn)處的切線方程為y+2x+ln2-2=0,求t和y0的值;
(2)若f(x)在區(qū)間[1,+∞)上是單調(diào)遞增函數(shù),求t的取值范圍;
(3)當(dāng)t=1時(shí),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第一次月考理科數(shù)學(xué)試卷 題型:解答題
(本小題12分)如圖,函數(shù)y=|x|在x∈[-1,1]的圖象上有兩點(diǎn)A、B,AB∥
Ox軸,點(diǎn)M(1,m)(m是已知實(shí)數(shù),且m>)是△ABC的邊BC的中點(diǎn)。
(Ⅰ)寫出用B的橫坐標(biāo)t表示△ABC面積S的函數(shù)解析式S=f(t);
(Ⅱ)求函數(shù)S=f(t)的最大值,并求出相應(yīng)的C點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
①|(zhì)|=||(a>c>0);
②=λ(其中=(,t),λ≠0,t∈R);
③動(dòng)點(diǎn)P的軌跡C經(jīng)過點(diǎn)B(0,-1).
(1)求c的值;
(2)求曲線C的方程;
(3)是否存在方向向量為a0=(1,k)(k≠0)的直線l,使l與曲線C交于兩個(gè)不同的點(diǎn)M、N,且||=||?若存在,求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
①|(zhì)|=||(a>c>0);
②=λ(其中=(,t),λ≠0,t∈R);
③動(dòng)點(diǎn)P的軌跡C經(jīng)過點(diǎn)B(0,-1).
(1)求c的值;
(2)求曲線C的方程;
(3)是否存在方向向量為a0=(1,k)(k≠0)的直線l,使l與曲線C交于兩個(gè)不同的點(diǎn)M、N,且||=||?若存在,求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com