【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個相異零點,求證:.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)對f′(x中的k分類討論,根據(jù)f′(x)的正負判斷函數(shù)的單調(diào)性即可.

(2)由題意得lnx1kx1=0,lnx2kx2=0,兩式作差可得,lnx1lnx2kx1x2),k=,要證lnx1+lnx2>2即kx1+x2)>2,將k代換后,化簡變形得,設(shè)t1,構(gòu)造函數(shù)gt),利用新函數(shù)的導數(shù)求出單調(diào)區(qū)間,證得gt)>g(1)=0即可.

(1),

①當時,在區(qū)間上單調(diào)遞增;

②當時,由,得,所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

(2)因為,的兩個零點,則,

所以,.

要證,只要證,即證,

即證,即證,只要證.

設(shè),則只要證.

設(shè),則,所以上單調(diào)遞增.

所以,即,所以,即.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.

(1) 求拋物線的方程;

(2) 當點為直線上的定點時,求直線的方程;

(3) 當點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x2+1)﹣e﹣|x|(e為自然對數(shù)的底數(shù)),則不等式f(2x+1)>f(x)的解集是( 。

A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線/的極坐標方程為.

1)求曲線C和直線l的直角坐標方程;

2)過點l的垂線l0CA,B兩點,點Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花店每天以每枝元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.

1)若花店一天購進枝玫瑰花,求當天的利潤(單位:元)關(guān)于當天需求量(單位:枝,)的函數(shù)解析式.

2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

i)若花店一天購進枝玫瑰花,表示當天的利潤(單位:元),求的分布列,數(shù)學期望及方差;

ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2021年福建省高考實行“”模式.”模式是指:“3”為全國統(tǒng)考科目語文、數(shù)學、外語,所有學生必考;“1”為首選科目,考生須在高中學業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學、生物、政治、地理4個科目中選擇2科,共計6個考試科目.

1)若學生甲在“1”中選物理,在“2”中任選2科,求學生甲選化學和生物的概率;

2)若學生乙在“1”中任選1科,在“2”中任選2科,求學生乙不選政治但選生物的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的定義域為,,使得不等式成立,關(guān)于的不等式的解集記為.

(1)若為真,求實數(shù)的取值集合;

(2)在(1)的條件下,若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點為,橢圓上任意一點,滿足,且橢圓過點.

(1)求橢圓的標準方程;

(2)設(shè)是軌跡上的兩個動點,線段的中點在直線 (為參數(shù))上,線段的中垂線與交于兩點,是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A.命題“若,則0”的否命題為“若,則0

B.命題“函數(shù)fx)=(a1xR上的增函數(shù)”的否定是“函數(shù)fx)=(a1xR上的減函數(shù)”

C.命題“在ABC中,若sinAsinB,則AB”的逆否命題為真命題

D.命題“若x2,則x23x+20”的逆命題為真命題

查看答案和解析>>

同步練習冊答案