【題目】已知橢圓的左、右頂點(diǎn)為,,橢圓上任意一點(diǎn),滿足,且橢圓過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)是軌跡上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)在直線 (為參數(shù))上,線段的中垂線與交于兩點(diǎn),是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

【答案】(1) (2) 存在點(diǎn)符合條件,坐標(biāo)為.

【解析】

1)設(shè),,根據(jù)題意列出方程,聯(lián)立求解即可;

2)直線參數(shù)方程轉(zhuǎn)換為普通方程,當(dāng)直線垂直于軸時(shí),三點(diǎn)共線不符合題意;當(dāng)直線不垂直與軸時(shí),設(shè)存在點(diǎn),直線的斜率為,,,,根據(jù)題意利用圓的性質(zhì)和垂直向量點(diǎn)積為0,列出方程求解可得答案.

解:(1)設(shè),,,則 ,

,

橢圓過點(diǎn)

聯(lián)立①②解得:

所求橢圓方程為:

(2)將直線的參數(shù)方程為參數(shù))化為普通方程,

當(dāng)直線垂直于軸時(shí),直線方程為,

此時(shí) ,與點(diǎn)三點(diǎn)共線,不合題意;

當(dāng)直線不垂直與軸時(shí),設(shè)存在點(diǎn),直線的斜率為,,,

得:,則 ,故

此時(shí),直線斜率為的直線方程為,即

聯(lián)立,整理得:

所以,

由題意,于是

,因?yàn)?/span>在橢圓內(nèi),,符合題意;

綜上,存在點(diǎn)符合條件,坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲地,隨著人們生活水平的不斷提高,進(jìn)入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習(xí)慣進(jìn)入電影院看電影的人簡(jiǎn)稱為“有習(xí)慣”的人,否則稱為“無習(xí)慣的人”.某電影院在甲地隨機(jī)調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:

(1)以年齡45歲為分界點(diǎn),請(qǐng)根據(jù)100個(gè)樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān);

(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計(jì)概率,若每張電影票定價(jià)為,則在“有習(xí)慣”的人中約有的人會(huì)買票看電影(為常數(shù)).已知票價(jià)定為30元的某電影,票房達(dá)到了 69.3萬元.某新影片要上映,電影院若將電影票定價(jià)為25元,那么該影片票房估計(jì)能達(dá)到多少萬元?

參考公式:,其中.

參考臨界值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)相異零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)G(x,y)滿足

(1)求動(dòng)點(diǎn)G的軌跡C的方程;

(2)過點(diǎn)Q(1,1)作直線L與曲線交于不同的兩點(diǎn),且線段中點(diǎn)恰好為Q.求的面積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若的一條切線,求的值;

(3)已知,為整數(shù),若對(duì)任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠抽取了一臺(tái)設(shè)備在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.

(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這臺(tái)設(shè)備在正常狀態(tài)下生產(chǎn)的產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差.任取一個(gè)產(chǎn)品,記其質(zhì)量指標(biāo)值為.若,則認(rèn)為該產(chǎn)品為一等品;,則認(rèn)為該產(chǎn)品為二等品;若,則認(rèn)為該產(chǎn)品為不合格品.已知設(shè)備正常狀態(tài)下每天生產(chǎn)這種產(chǎn)品1000個(gè).

(i)用樣本估計(jì)總體,問該工廠一天生產(chǎn)的產(chǎn)品中不合格品是否超過?

(ii)某公司向該工廠推出以舊換新活動(dòng),補(bǔ)足50萬元即可用設(shè)備換得生產(chǎn)相同產(chǎn)品的改進(jìn)設(shè)備.經(jīng)測(cè)試,設(shè)備正常狀態(tài)下每天生產(chǎn)產(chǎn)品1200個(gè),生產(chǎn)的產(chǎn)品為一等品的概率是,二等品的概率是,不合格品的概率是.若工廠生產(chǎn)一個(gè)一等品可獲得利潤50元,生產(chǎn)一個(gè)二等品可獲得利潤30元,生產(chǎn)一個(gè)不合格品虧損40元,試為工廠做出決策,是否需要換購設(shè)備

參考數(shù)據(jù):①;②;③,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;

2)若對(duì)任意都恒成立,求證:a的最大值大于8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放40年來,體育產(chǎn)業(yè)蓬勃發(fā)展反映了健康中國理念的普及.下圖是我國2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長率(%).

(Ⅰ)從2007年至2016年這十年中隨機(jī)選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;

(Ⅱ)從2007年至2011年這五年中隨機(jī)選出兩年,求至少有一年體育產(chǎn)業(yè)年增長率超過25%的概率;

(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象局統(tǒng)計(jì),某市2019年從11日至130日這30天里有26天出現(xiàn)霧霾天氣.國際上通常用環(huán)境空氣質(zhì)量指數(shù)(AQI)來描述污染狀況,下表是某氣象觀測(cè)點(diǎn)記錄的連續(xù)4天里,該市AQI指數(shù)與當(dāng)天的空氣水平可見度的情況.

AQI指數(shù)

900

700

300

100

空氣水平可見度

0.5

3.5

6.5

9.5

1)設(shè),根據(jù)表中的數(shù)據(jù),求出關(guān)于的回歸方程;

2)若某天該市AQT指數(shù),那么當(dāng)天空氣水平可見度大約為多少?

附:參考數(shù)據(jù):,.

參考公式:線性回歸力程中,,,其中為樣本平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案