14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2n+1(n∈N*),求數(shù)列{an}的通項(xiàng)公式.

分析 通過Sn=2an-2n+1與Sn-1=2an-1-2n作差整理可知an=2an-1+2n,兩邊同時(shí)除以2n、整理得數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是首項(xiàng)為2、公差為1的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論.

解答 解:∵Sn=2an-2n+1(n∈N*),
∴當(dāng)n≥2時(shí),Sn-1=2an-1-2n(n∈N*),
兩式相減得:an=2an-2an-1-2n,即an=2an-1+2n,
兩邊同時(shí)除以2n,得:$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+1,
又∵a1=2a1-4,即$\frac{{a}_{1}}{{2}^{1}}$=$\frac{4}{2}$=2,
∴數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是首項(xiàng)為2、公差為1的等差數(shù)列,
∴$\frac{{a}_{n}}{{2}^{n}}$=2+n-1=n+1,an=(n+1)•2n

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),構(gòu)造等差數(shù)列是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{x+y≥0}\\{x-y≥0}\\{x≤2}\\{\;}\end{array}\right.$內(nèi)的任意一點(diǎn),則z=2x-y的取值范圍是[0,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個(gè)盒子里裝有相同大小的黑球10個(gè),紅球12個(gè),白球4個(gè),從中任取2個(gè),其中白球?yàn)閄,則下列算式中等于$\frac{{C}_{22}^{1}{C}_{4}^{1}+{C}_{22}^{2}}{{C}_{26}^{2}}$的是( 。
A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)滿足,對(duì)于任意x1,x2∈(-∞,0)∪(0,+∞),都有f(x1•x2)=f(x1)+f(x2),且f(x)在(0,+∞)上是增函數(shù).
(1)判斷f(x)在(-∞,0)上的單調(diào)性并證明你的結(jié)論;
(2)如果f(4)=2,f(x-1)<4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.小明同學(xué)的QQ密碼是由0,1,2,3,4,5,6,7,8,9這10個(gè)數(shù)字中的6個(gè)數(shù)字組成的六位數(shù),由于長時(shí)間未登錄QQ,小明忘記了密碼的最后兩個(gè)數(shù)字,如果小明登錄QQ時(shí)密碼的最后兩個(gè)數(shù)字隨意選取,則恰好能登錄的概率是( 。
A.$\frac{1}{1{0}^{5}}$B.$\frac{1}{1{0}^{4}}$C.$\frac{1}{1{0}^{2}}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.平面四邊形ABCD中,根據(jù)向量關(guān)系(  ),可推知其為平行四邊形.
A.$\overrightarrow{AB}$=2$\overrightarrow{DC}$B.$\overrightarrow{AB}$=-$\overrightarrow{CD}$C.|$\overrightarrow{AB}$|=|$\overrightarrow{DC}$|D.|$\overrightarrow{AB}$|=|$\overrightarrow{BC}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若tanα=2,求下列各式的值:
(1)$\frac{2cosα+3sinα}{cosα+2sinα}$;
(2)sinαcosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,已知BC=4,AC=3,cos(A-B)=$\frac{3}{4}$,則△ABC的面積為$\frac{3\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b∈(0,+∞),則下列不等式中不成立的是( 。
A.a+b+$\frac{1}{\sqrt{ab}}$≥2$\sqrt{2}$B.(a+b)($\frac{1}{a}$+$\frac{1}$)≥4C.$\frac{{a}^{2}+^{2}}{\sqrt{ab}}$≥2$\sqrt{ab}$D.$\frac{2ab}{a+b}$>$\sqrt{ab}$

查看答案和解析>>

同步練習(xí)冊答案