如圖,已知PE切⊙O于點E,割線PBA交⊙O于A,B兩點,∠APE的平分線和AE,BE分別交于點C,D.
求證:(1)CE=DE;(2).
科目:高中數(shù)學 來源: 題型:解答題
已知AB是圓O的直徑,C為圓O上一點,CD⊥AB于點D,弦BE與CD、AC分別交于點M、N,且MN=MC
(1)求證:MN=MB;
(2)求證:OC⊥MN。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,過圓O外一點P作該圓的兩條割線PAB和PCD,分別交圓O于點A,B,C,D,弦AD和BC交于點Q,割線PEF經(jīng)過點Q交圓O于點E,F,點M在EF上,且∠BAD=∠BMF.
(1)求證:PA·PB=PM·PQ;
(2)求證:∠BMD=∠BOD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2),圓O1的弦AB交圓O2于點C(O1不在AB上).
求證:AB∶AC為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F(xiàn)在AC上,且AE=AF.
(1)證明:B、D、H、E四點共圓;
(2)證明:CE平分∠DEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(拓展深化)如圖①所示,△ABC內(nèi)接于⊙O,AB=AC,D是BC邊上的一點,E是直線AD和△ABC外接圓的交點.
(1)求證:AB2=AD·AE;
(2)如圖②所示,當D為BC延長線上的一點時,第(1)題的結(jié)論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結(jié)EC、CD.
(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com