函數(shù)f(x)=x2+bx+c,f(4)=15,f(3)+f(2)+1=0,求f(x)的圖象的對稱軸方程.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得b和c的方程組,解方程組可得函數(shù)解析式,可得圖象的對稱軸方程
解答: 解:∵函數(shù)的解析式為f(x)=x2+bx+c,
又∵f(4)=15,f(3)+f(2)+1=0,
∴f(4)=16+4b+c=15,①
f(3)+f(2)+1=(9+3b+c)+(4+2b+c)+1=0,②
聯(lián)立①②解得b=4,c=-17,
∴函數(shù)的解析式為f(x)=x2+4x-17,
∴圖象的對稱軸方程為x=-
4
2×1
=-2
點(diǎn)評:本題考查二次函數(shù)的解析式和圖象的對稱性,待定系數(shù)是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
16
=1的左右頂點(diǎn)分別為A1A2,點(diǎn)P是雙曲線上任一點(diǎn),Q是P關(guān)于x軸的對稱點(diǎn),求直線A1P與A2Q交點(diǎn)M的軌跡E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1
的離心率為
2
2
,F(xiàn)(c,0)是它的一個(gè)焦點(diǎn),則橢圓內(nèi)接正方形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+2y-4≤0
x≥0
y≥0
,則z=(x-4)2+(y-5)2的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9865+828535-9865+828535+9865+….這樣以此類推到加減100次的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tan(2πx+
π
6
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求函數(shù)f(x)=sin(x+
π
4
)+2sin(x-
π
4
)-4cos2x+3cos(x+
4
)的值.
(1)x=
π
4

(2)x=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
x-1在區(qū)間[-2,-1]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知算法如下:
第一步,令d=a;
第二步,如果b<d,則d=b;
第三步,如果c<d,則d=c;
第四步,輸出d.
此算法的功能是
 

查看答案和解析>>

同步練習(xí)冊答案