【題目】如圖所示,在四棱錐PABCD中,PA⊥底面ABCDPA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,ECD的中點.

(1)求證:BC∥平面PAE;

(2)求點A到平面PCD的距離.

【答案】(1)見解析;(2)

【解析】(1)證明:∵AB,BC=1,∠ABC=90°,

AC=2,∠BCA=60°.

在△ACD中,∵AD=2,AC=2,∠ACD=60°,

AD2AC2CD2-2AC·CD·cos∠ACD,

CD=4,∴AC2AD2CD2,∴△ACD是直角三角形,

ECD中點,∴AECDCE

∵∠ACD=60°,∴△ACE為等邊三角形,

∴∠CAE=60°=∠BCA,∴BCAE,

AE平面PAE,BC平面PAE,∴BC∥平面PAE.

(2)設點A到平面PCD的距離為d,根據(jù)題意可得,

PC=2,PDCD=4,∴SPCD=2

VPACDVAPCD,∴·SACD·PA·SPCD·d,

××2×2×2=×2d,∴d,

∴點A到平面PCD的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BC∥AD AB⊥AD,AD=2AB=2BC=2,OAD中點.

)求證:PO⊥平面ABCD

)線段AD上是否存在點,使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結(jié)果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與曲線恰有兩個不同的交點,記的所有可能取值構(gòu)成集合,是橢圓上一動點,點與點關于直線對稱,記的所有可能取值構(gòu)成集合,若隨機從集合中分別抽出一個元素,則的概率是___

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面α及直線a,b,則下列說法正確的是(  )

A. 若直線a,b與平面α所成角都是30°,則這兩條直線平行

B. 若直線a,b與平面α所成角都是30°,則這兩條直線不可能垂直

C. 若直線a,b平行,則這兩條直線中至少有一條與平面α平行

D. 若直線a,b垂直,則這兩條直線與平面α不可能都垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)同時滿足:(1)對于定義域上的任意,恒有;(2)對于定義域上的任意,當時,恒有,則稱函數(shù)為“理想函數(shù)”.給出下列四個函數(shù)中:①; ②; ③;④,則被稱為“理想數(shù)”的有________(填相應的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知中,角的對邊分別為,

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且 .

(1)試判斷線段上是否存在一點,使得平面,請說明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程為,射線與橢圓的交點為M,過M作傾斜角互補的兩條直線,分別與橢圓交于A,B兩點(異于M).

(1)求證:直線AB的斜率為定值;

(2)求面積的最大值。

查看答案和解析>>

同步練習冊答案