計(jì)算:
(1)(2
3
5
0+2-2-(2
1
4
 
1
2
+(
25
36
0.5+(
(-2)2

(2)
1
2
lg
32
49
-
4
3
lg
8
+lg
245
考點(diǎn):對數(shù)的運(yùn)算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用指數(shù)冪的運(yùn)算法則即可得出;
(2)利用對數(shù)的運(yùn)算法則即可得出.
解答: 解:(1)原式=1+
1
4
-(
3
2
)
1
2
+(
5
6
)2×0.5
+2
=1+
1
4
-
3
2
+
5
6
+2
=3.
(2)原式=lg
32
49
×245
2
3
2
×
4
3
=lg
32×5
4
=lg
10
=
1
2
點(diǎn)評:本題考查了指數(shù)冪與對數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)為偶函數(shù),且x0是的y=f(x)+ex一個零點(diǎn),則-x0一定是下列哪個函數(shù)的零點(diǎn)(  )
A、y=f(-x)ex-1
B、y=f(x)ex+1
C、y=f(x)ex-1
D、y=f(x)e-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+2ai)•i=1-bi,其中a,b∈R,則|a+bi|=(  )
A、
1
2
+i
B、
5
C、
5
2
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤2},B={x|x≤a},若A∩B≠∅,則實(shí)數(shù)a的取值范圍為(  )
A、{a|a<2}
B、{a|a≥-1}
C、{a|a>-1}
D、{a|-1≤a<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2lg(x-2y)=lgx+lgy(x,y∈R),則
y
x
的值為( 。
A、4
B、1或
1
4
C、1或4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式(式中各字母均為正數(shù)):
(1)4x
1
4
(-3x
1
4
y-
1
3
)÷(-6x-
1
2
y-
2
3

(2)log2(log216)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列函數(shù),其中奇函數(shù)的個數(shù)為( 。
①y=
ax+1
ax-1
;  ②y=
lg(1-x2)
|x+5|-5
;  ③y=
|x|
x
;  ④y=loga
1+x
1-x
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x-
1
3
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個正數(shù)a,b,可按規(guī)則c=ab+a+b擴(kuò)充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則擴(kuò)充得到一個新數(shù),依次下去,將每擴(kuò)充一次得到一個新數(shù)稱為一次操作.
(1)若a=1,b=3,按上述規(guī)則操作三次,則第三次擴(kuò)充所得的新數(shù)是
 

(2)若p>q>0,經(jīng)過6次操作后擴(kuò)充所得的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),則m+n的值為
 

查看答案和解析>>

同步練習(xí)冊答案