19.若變量x、y,滿足約束條件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,則z=2x+4y的最大值為$\frac{10}{3}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{4}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{z}{4}$經(jīng)過點A時,
直線y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最大,此時z最大,
由$\left\{\begin{array}{l}{y=2x}\\{x+y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{2}{3}}\end{array}\right.$,
即A($\frac{1}{3}$,$\frac{2}{3}$),
此時z=2×$\frac{1}{3}$+4×$\frac{2}{3}$=$\frac{10}{3}$,
故答案為:$\frac{10}{3}$.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線C:x2+y2+xy+m=0,經(jīng)過點(1,-1),則m=( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在曲線y=x3-3x2+6x一6的切線中斜率最小的切線方程是3x-y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用五種不同的顏色給圖中編號為1-6的六個長方形區(qū)域涂色,要求顏色齊全且有公共邊的區(qū)域不同色,則共有1080種不同的涂色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知a>0,x、y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$ 若z=2x+y的最小值與最大值的和為7,則a=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的奇函數(shù)f(x)都有f(x+$\frac{5}{2}$)+f(x)=0,當(dāng)-$\frac{5}{4}$≤x≤0時,f(x)=2x+a,則f(16)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.手機密碼通常由六位數(shù)字組成(每位數(shù)字都可以從0~9這十個數(shù)字中任意選。,問可以設(shè)置多少個不同的密碼?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.sin4$\frac{π}{12}$-cos4$\frac{π}{12}$等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx,g(x)=$\frac{1}{2}$ax2-bx,設(shè)h(x)=f(x)-g(x).
(1)若g(2)=2,討論函數(shù)h(x)的單調(diào)性;
(2)若函數(shù)g(x)是關(guān)于x的一次函數(shù),且函數(shù)h(x)有兩個不同的零點x1,x2,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案