已知函數(shù)f(x)=3sin(ωx+
π
6
)(ω>0),在區(qū)間[0,2]上存在唯一x1使f(x1)=3,存在唯一x2使f(x2)=-3,則ω的取值范圍是
 
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)條件可以確定x1是最大值點,x2是最小值點,根據(jù)函數(shù)圖象之間的關(guān)系進行判斷即可.
解答: 解:若在區(qū)間[0,2]上存在唯一x1使f(x1)=3,存在唯一x2使f(x2)=-3,
則當(dāng)x=x1時,函數(shù)取得最大值,當(dāng)x=x2時,函數(shù)取得最小值,
則函數(shù)的周期滿足
T≤2
T+
T
4
>2
,
ω
≤2
5
4
×
ω
>2
,則
ω≥π
ω<
4
,
即π≤ω<
4

故答案為:π≤ω<
4
點評:本題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)條件確定函數(shù)的周期滿足的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x
2x+1
的值域是( 。
A、(0,1)
B、(0,1]
C、(0,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P、Q是函數(shù)f(x)=2sin(2x+φ)(φ為常數(shù))圖象上的兩點且橫坐標(biāo)分別為-
π
12
、
π
4
,若f(x)圖象上存在一個最高點M,使得(
MP
+
MQ
)•
PQ
=0,則下列關(guān)系一定成立的是 ( 。
A、f(
π
12
)=2
B、f(
π
12
)=-2
C、f(
π
5
)+f(
15
)=0
D、f(-
π
5
)+f(
π
30
)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2xsinα-1,x∈[-
3
2
,
1
2
],α∈[0,2π].
(1)當(dāng)α=
π
6
時,求f(x)的最大值和最小值,并求使函數(shù)取得最值的x的值;
(2)求α的取值范圍,使得f(x)在區(qū)間[-
3
2
1
2
]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCO的三邊組成,隧道的最大高度為4.9m,AB=10m,BC=2.4m.現(xiàn)把隧道的橫斷面放在平面直角坐標(biāo)系中,若有一輛高為4m,寬為2m的裝有集裝箱的汽車要通過隧道.問:如果不考慮其他因素,汽車的右側(cè)離開隧道右壁至少多少米才不至于碰到隧道頂部(拋物線部分為隧道頂部,AO、BC為壁)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,4,1),
b
=(-2,y,-1),且
a
b
,則x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是校園“十佳歌手”大獎賽上,七位評委為甲、乙兩位選手打出的分?jǐn)?shù)的莖葉圖.
(1)寫出評委為乙選手打出分?jǐn)?shù)數(shù)據(jù)的眾數(shù),中位數(shù);
(2)求去掉一個最高分和一個最低分后,兩位選手所剩數(shù)據(jù)的平均數(shù)和方差,根據(jù)結(jié)果比較,哪位選手的數(shù)據(jù)波動?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表:
年產(chǎn)量/畝年種植成本/畝每噸售價
黃瓜4噸1.2萬元0.55萬元
韭菜6噸0.9萬元0.3萬元
問該農(nóng)戶如何安排種植計劃,才能使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大,最大總利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(tanx)=sin2x,則f(-1)的值是( 。
A、1
B、-1
C、
1
2
D、0

查看答案和解析>>

同步練習(xí)冊答案