已知
m
,
n
是兩個(gè)單位向量,它們的夾角為60°,設(shè)
a
=2
m
+
n
,
b
=-3
m
+2
n
.求向量
a
b
的夾角.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積定義及其運(yùn)算性質(zhì)即可得出.
解答: 解:∵
m
,
n
是兩個(gè)單位向量,它們的夾角為60°,∴
m
n
=1×1×cos60°=
1
2

a
=2
m
+
n
,
b
=-3
m
+2
n
.∴
a
b
=-6
m
2
+2
n
2
+
m
n
=-6+2+
1
2
=-
7
2

|
a
|
=
4
m
2
+
n
2
+4
m
n
=
4+1+4×
1
2
=
7
,|
b
|
=
9
m
2
+4
n
2
-12
m
n
=
9+4-12×
1
2
=
7

時(shí)向量
a
b
的夾角為θ.
∴cosθ=
a
b
|
a
||
b
|
=
-
7
2
7
×
7
=-
1
2

∴θ=120°.
點(diǎn)評(píng):本題考查了向量的數(shù)量積定義及其運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)log327+lg
1
10000
+ln(e
e
)+log2(log216)+8
2
3
-(
16
81
)
1
4

(2)已知f(α)=
sin(α-3π)cos(2π-α)sin(α+
π
2
)
cos(-π-α)sin(π-α)
,化簡(jiǎn)f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,設(shè)p:函數(shù)y=an在x∈(0,+∞)內(nèi)單調(diào)遞減;q:曲線(xiàn)y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p和q有且僅有一個(gè)為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖程序框圖,
(1)試將此程序框圖寫(xiě)成計(jì)算機(jī)程序(用當(dāng)型循環(huán)結(jié)構(gòu)寫(xiě));
(2)寫(xiě)出此程序執(zhí)行后輸出的結(jié)果;
(3)若判斷框里變成n<2k=17,其中k為大于1的正整數(shù),寫(xiě)出程序執(zhí)行后輸出的結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C為銳角△ABC的三個(gè)內(nèi)角,向量
m
=(2-2sinA,cosA+sinA),
n
=(1+sinA,cosA-sinA),且
m
n

(Ⅰ)求A的大小;
(Ⅱ)求下列函數(shù):y=2sin2B+cos(
3
-2B)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)-2f(
1
x
)=3x+2,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列方程:
(1)x -
1
3
=
1
8
     
(2)2x 
3
4
-1=15   
(3)log2(2x+1)=log2(x2-2)
(4)lg
x-1
=lg(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=f(x)的圖象在區(qū)間[a,b]上連續(xù)不斷,則“能用二分法求函數(shù)y=f(x)在區(qū)間(a,b)上的零點(diǎn)”的一個(gè)充要條件是“函數(shù)在y=f(x)區(qū)間(a,b)上有零點(diǎn)”;
②函數(shù)y=3sin(2x+
π
3
)的圖象可將y=3cos2x的圖象向左平移
π
12
個(gè)單位而得到;
③直線(xiàn)
x
a
-
y
b
=1(a>0,b>0)將圓x2+y2-2x+4y+3=0的弧分成相等的兩部分,則a+b的最小值為3+2
2
;
④在三棱錐P-ABC中,PA,PB,PC與平面ABC所成角相等,則點(diǎn)P在平面ABC上的射影是△ABC的內(nèi)心;
⑤函數(shù)y=
4-x2
|x-3|-3
的圖象關(guān)于原點(diǎn)成中心對(duì)稱(chēng).
其中真命題的是
 
.(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y,z滿(mǎn)足2x(x+
1
y
+
1
z
)=yz,則(x+
1
y
)(x+
1
z
)的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案