將一個等差數(shù)列依次寫出,其中ami表示第m行第i個數(shù),i=1,2,3,…,m.那么第m行的m個數(shù)之和是
 

第1行:2;
第2行:5,8;
第3行:11,14,17;
第4行:20,23,26,29;

第m行:am1,am2,am3,…,amm
考點:歸納推理,等差數(shù)列的通項公式
專題:推理和證明
分析:由題意歸納出數(shù)陣的規(guī)律,由等差數(shù)列的通項公式、前n項和公式確定am1,再由等差數(shù)列的前n項和公式求出第m行的m個數(shù)之和.
解答: 解:由題意知,從第一行起所有的數(shù)構(gòu)成以2為首項、以3為公差的等差數(shù)列,
且第一行有1個數(shù),第二行有2個數(shù),第三行有3個數(shù),…第m-1行有m-1個數(shù),
則前m-1行共有1+2+3+…+(m-1)=
(m-1)m
2
,
所以第m行的第一個數(shù)am1=2+[
(m-1)m
2
+1-1]×3=
3
2
m(m-1)+2

則第m行的數(shù)的和S=m×[
3
2
m(m-1)+2
]+
m(m-1)
2
×3
=
m(3m2+1)
2
,
故答案為:
m(3m2+1)
2
點評:本題考查歸納推理,等差數(shù)列的通項公式、前n項和公式,需要認(rèn)真觀察、分析、歸納出其中的規(guī)律,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過(1,2),(2,1)兩點的直線的傾斜角是(  )
A、
π
4
B、
π
3
C、
3
D、
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,角A、B、C的對邊分別是a、b、c,若b=1,c=2
2
,B+C=3A,
(Ⅰ)求邊a;
(Ⅱ)求tan(B+
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某學(xué)校高一、高二、高三年級分別有16、12、8個班.現(xiàn)采用分層抽樣的方法從高一、高二、高三三個年級中抽取9個班進行調(diào)查,
(1)求從高一、高二、高三年級分別抽取的班級個數(shù);
(2)若從抽取的高二、高三年級各個班中再隨機抽取2個進行調(diào)查,求抽取的2個班中至少有1個來自高三年級的概率
(3)已知高二年級的A班和高三年級的B班在所抽取的9個班中,現(xiàn)再從這9個班中按高一、高二、高三每年級各抽取一個班進行調(diào)查,求高二年級的A班和高三年級的B班都被抽取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足:對任意m,n∈R有f(m+n)=f(m)+f(n)-2,
(1)求證:函數(shù)y=f(x)-2為奇函數(shù).
(2)若函數(shù)f(x)在R上為增函數(shù),且f(1)=3,解關(guān)于x的不等式f(4x+1)+f(2x+1)>8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義域在R上的奇函數(shù),當(dāng)x∈[0,+∞)時,f(x)=x2+2x,則f(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:x(2x2-2ax+1)>0(a∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某國家5A級大型景區(qū)對每日游客數(shù)量擁擠等級規(guī)定如下:
 游客數(shù)量(百人) 0~50 51~100 101~150 151~200 201~300>300
 擁擠等級 優(yōu) 良 輕度擁擠 中度擁擠 重度擁擠 嚴(yán)重?fù)頂D
如圖(該景區(qū)某月游客數(shù)據(jù)):

(1)根據(jù)如圖估計景區(qū)該月份游客人數(shù)的平均值及該月游客擁擠等級;
(2)某人該月到景區(qū)連續(xù)游玩2天,求這兩天他遇到的游客擁擠等級為良的概率;
(3)由圖判斷該月從哪天開始連續(xù)三天的游客人數(shù)方差最。ńY(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將半徑為R的球加熱,若半徑從R=1到R=m時球的體積膨脹率為
28π
3
,則m的值為
 

查看答案和解析>>

同步練習(xí)冊答案